File size: 23,872 Bytes
9b0a8c5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3bc3503
9b0a8c5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3bc3503
 
9b0a8c5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3bc3503
9b0a8c5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3bc3503
9b0a8c5
3bc3503
9b0a8c5
 
 
3bc3503
9b0a8c5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3bc3503
9b0a8c5
3bc3503
9b0a8c5
 
 
3bc3503
9b0a8c5
 
 
3bc3503
9b0a8c5
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
import os.path
import datetime
import io
import PIL
import requests
from datasets import load_dataset, concatenate_datasets, Image
from data.lang2eng_map import lang2eng_mapping
from data.words_map import words_mapping
import gradio as gr
import bcrypt
from config.settings import HF_API_TOKEN
from huggingface_hub import snapshot_download
# from .blur import blur_faces, detect_faces
from retinaface import RetinaFace
from gradio_modal import Modal
import numpy as np
import cv2
import time
import re
import os
import glob

def update_image(image_url):
    try:
        headers = {"User-Agent": "Mozilla/5.0"}
        response = requests.get(image_url, headers=headers, timeout=10)
        response.raise_for_status()
        content_type = response.headers.get("Content-Type", "")
        if "image" not in content_type:
            gr.Error(f"⚠️ URL does not point to a valid image.",  duration=5)
            return "Error: URL does not point to a valid image."

        img = PIL.Image.open(io.BytesIO(response.content))
        img = img.convert("RGB")
        return img, Modal(visible=False)
    except Exception as e:
        # print(f"Error: {str(e)}")
        if image_url is None or image_url == "":
            return gr.Image(label="Image", elem_id="image_inp"), Modal(visible=False)
        else:
            return gr.Image(label="Image", value=None, elem_id="image_inp"), Modal(visible=True)


def update_timestamp():
    return gr.Textbox(datetime.datetime.now().timestamp(), label="Timestamp", visible=False) # FIXME visible=False)


def clear_data():
    return (None, None, None, None, None, gr.update(value=None), 
            gr.update(value=[]), gr.update(value=[]), gr.update(value=[]),
            gr.update(value=[]), gr.update(value=[]))


def exit():
    return (None, None, None, gr.Dataset(samples=[]), gr.Markdown("**Loading your data, please wait ...**"), 
            gr.update(value=None), gr.update(value=None), [None, None, "", ""], gr.update(value=None), 
            gr.update(value=None), gr.update(value=None),
            gr.update(value=None), gr.update(value=None), gr.update(value=None), 
            gr.update(value=None), gr.update(value=None))


def validate_inputs(image, ori_img): # is_blurred
    # Perform your validation logic here
    if image is None:
        return gr.Button("Submit", variant="primary", interactive=False), None, None,  # False
        
    # Define maximum dimensions
    MAX_WIDTH = 1024
    MAX_HEIGHT = 1024
    
    # Get current dimensions
    height, width = image.shape[:2]
    
    # # Check if resizing is needed
    # NOTE: for now, let's keep the full image resolution
    # if width > MAX_WIDTH or height > MAX_HEIGHT:
    #     # Calculate scaling factor
    #     scale = min(MAX_WIDTH/width, MAX_HEIGHT/height)
        
    #     # Calculate new dimensions
    #     new_width = int(width * scale)
    #     new_height = int(height * scale)
        
    #     # Resize image while maintaining aspect ratio
    #     result_image = cv2.resize(image, (new_width, new_height), interpolation=cv2.INTER_AREA)
    # else:
    #     result_image = image
    result_image = image
    if ori_img is None:
        # If the original image is None, set it to the resized image
        ori_img = gr.State(result_image.copy())

    return gr.Button("Submit", variant="primary", interactive=True), result_image, ori_img # is_blurred


def add_prefix(example, column_name, prefix):
    example[column_name] = (f"{prefix}/" + example[column_name])
    return example

def update_user_data(username, password, country, language_choice, HF_DATASET_NAME, local_ds_directory_path):
    
    datasets_list = []
    # Try loading local dataset
    try:
        snapshot_download(
            repo_id=HF_DATASET_NAME,
            repo_type="dataset",
            local_dir=local_ds_directory_path,  # Your target local directory
            allow_patterns=f"{country}/{language_choice}/{username}/*",  # f"**/{username}/*"
            token=HF_API_TOKEN
        )
    except Exception as e:
        print(f"Snapshot download error: {e}")
    # import pdb; pdb.set_trace()
    if has_user_json(username, country, language_choice, local_ds_directory_path):
        try:
            # ds_local = load_dataset(local_ds_directory_path, data_files=f'logged_in_users/**/{username}/**/*.json') # This does not filter by country and language
            ds_local = load_dataset(local_ds_directory_path, data_files=f'logged_in_users/{country}/{language_choice}/{username}/**/*.json')
            ds_local = ds_local.remove_columns("image_file")
            ds_local = ds_local.rename_column("image", "image_file")
            ds_local = ds_local.map(add_prefix, fn_kwargs={"column_name": "image_file", "prefix": local_ds_directory_path})
            ds_local = ds_local.cast_column("image_file", Image())

            datasets_list.append(list(ds_local.values())[0])
        except Exception as e:
            print(f"Local dataset load error: {e}")

    # # Try loading hub dataset
    # try:
    #     ds_hub = load_dataset(HF_DATASET_NAME, data_files=f'**/{username}/**/*.json', token=HF_API_TOKEN)
    #     ds_hub = ds_hub.cast_column("image_file", Image())
    #     datasets_list.append(list(ds_hub.values())[0])
    # except Exception as e:
    #     print(f"Hub dataset load error: {e}")

    # Handle all empty
    if not datasets_list:
        return gr.Dataset(samples=[]), gr.Markdown("<p style='color: red;'>No data available for this user. Please upload an image.</p>")

    dataset = concatenate_datasets(datasets_list)
    # TODO: we should link username with password and language and country, otherwise there will be an error when loading with different language and clicking on the example
    if username and password:
        user_dataset = dataset.filter(lambda x: x['username'] == username and is_password_correct(x['password'], password))
        user_dataset = user_dataset.sort('timestamp', reverse=True)
        # Show only unique entries (most recent)
        user_ids = set()
        samples = []
        for d in user_dataset:
            if d['id'] in user_ids:
                continue
            user_ids.add(d['id'])
            if d['excluded']:
                continue
            # Get additional concepts by category or empty dict if not present
            # additional_concepts_by_category = {
            #     "category1": d.get("category_1_concepts", []),
            #     "category2": d.get("category_2_concepts", []),
            #     "category3": d.get("category_3_concepts", []),
            #     "category4": d.get("category_4_concepts", []),
            #     "category5": d.get("category_5_concepts", [])
            # }
            additional_concepts_by_category = [
                d.get("category_1_concepts", [""]),
                d.get("category_2_concepts", [""]),
                d.get("category_3_concepts", [""]),
                d.get("category_4_concepts", [""]),
                d.get("category_5_concepts", [""])
            ]
            samples.append(
                [
                    d['image_file'], d['image_url'], d['caption'] or "", d['country'],  
                    d['language'], d['category'], d['concept'], additional_concepts_by_category, d['id']] # d['is_blurred']
            )
        return gr.Dataset(samples=samples), None
    else:
        # TODO: should we show the entire dataset instead? What about "other data" tab?
        return gr.Dataset(samples=[]), None


def update_language(local_storage, metadata_dict, concepts_dict):
    country, language, email, password, = local_storage
    # my_translator = GoogleTranslator(source='english', target=metadata_dict[country][language])
    categories = concepts_dict[country][lang2eng_mapping.get(language, language)]
    if language in words_mapping:
        categories_keys_translated = [words_mapping[language].get(cat, cat) for cat in categories.keys()]
    else:
        categories_keys_translated = list(categories.keys())
    
    # Get the 5 categories in alphabetical order
    categories_list = sorted(list(categories.keys()))[:5]
    
    # Create translated labels for the 5 categories
    translated_categories = []
    for cat in categories_list:
        if language in words_mapping:
            translated_cat = words_mapping[language].get(cat, cat)
        else:
            translated_cat = cat
        translated_categories.append(translated_cat)
    
    fn = metadata_dict[country][language]["Task"]
    if os.path.exists(fn):
        with open(fn, "r", encoding="utf-8") as f:
            TASK_TEXT = f.read()
    else:
        fn = metadata_dict["USA"]["English"]["Task"]
        with open(fn, "r", encoding="utf-8") as f:
            TASK_TEXT = f.read()
    
    fn = metadata_dict[country][language]["Instructions"]
    if os.path.exists(fn):
        with open(metadata_dict[country][language]["Instructions"], "r", encoding="utf-8") as f:
            INST_TEXT = f.read()
    else:
        fn = metadata_dict["USA"]["English"]["Instructions"]
        with open(fn, "r", encoding="utf-8") as f:
            INST_TEXT = f.read()

    return (
        gr.update(label=metadata_dict[country][language]["Country"], value=country),
        gr.update(label=metadata_dict[country][language]["Language"], value=language),
        gr.update(label=metadata_dict[country][language]["Email"], value=email),
        gr.update(label=metadata_dict[country][language]["Password"], value=password),
        gr.update(choices=categories_keys_translated, interactive=True, label=metadata_dict[country][language]["Category"], allow_custom_value=False, elem_id="category_btn"),
        gr.update(choices=[], interactive=True, label=metadata_dict[country][language]["Concept"], allow_custom_value=True, elem_id="concept_btn"),
        gr.update(label=metadata_dict[country][language]["Image"]),
        gr.update(label=metadata_dict[country][language]["Image_URL"]),
        gr.update(label=metadata_dict[country][language]["Description"]),
        gr.Markdown(TASK_TEXT),
        gr.Markdown(INST_TEXT),
        gr.update(value=metadata_dict[country][language]["Instructs_btn"]),
        gr.update(value=metadata_dict[country][language]["Clear_btn"]),
        gr.update(value=metadata_dict[country][language]["Submit_btn"]),
        gr.Markdown(metadata_dict[country][language]["Saving_text"]),
        gr.Markdown(metadata_dict[country][language]["Saved_text"]),
        gr.update(label=metadata_dict[country][language]["Timestamp"]),
        gr.update(value=metadata_dict[country][language]["Exit_btn"]),
        gr.Markdown(metadata_dict[country][language]["Browse_text"]),
        gr.Markdown(metadata_dict[country][language]["Loading_msg"]),
        # gr.update(choices=categories_keys_translated, interactive=True, label=metadata_dict[country][language].get("Add_Category","Additional Categories (Optional)"), allow_custom_value=False, elem_id="additional_category_btn"),
        # gr.update(choices=[], interactive=True, label=metadata_dict[country][language].get("Add_Concept","Additional Concepts (Optional)"), allow_custom_value=True, elem_id="additional_concept_btn"),
        gr.update(value=metadata_dict[country][language].get("Hide_all_btn","πŸ‘€ Hide All Faces")),
        gr.update(value=metadata_dict[country][language].get("Hide_btn","πŸ‘€ Hide Specific Faces")),
        gr.update(value=metadata_dict[country][language].get("Unhide_btn","πŸ‘€ Unhide Faces")),
        gr.update(value=metadata_dict[country][language].get("Exclude_btn","Exclude Selected Example")),
        gr.update(label=translated_categories[0], choices=sorted(concepts_dict[country][lang2eng_mapping.get(language, language)][categories_list[0]])),
        gr.update(label=translated_categories[1], choices=sorted(concepts_dict[country][lang2eng_mapping.get(language, language)][categories_list[1]])),
        gr.update(label=translated_categories[2], choices=sorted(concepts_dict[country][lang2eng_mapping.get(language, language)][categories_list[2]])),
        gr.update(label=translated_categories[3], choices=sorted(concepts_dict[country][lang2eng_mapping.get(language, language)][categories_list[3]])),
        gr.update(label=translated_categories[4], choices=sorted(concepts_dict[country][lang2eng_mapping.get(language, language)][categories_list[4]])),
    )


def update_intro_language(selected_country, selected_language, intro_markdown, metadata):
    if selected_language is None:
        return intro_markdown

    fn = metadata[selected_country][selected_language]["Intro"]
    if not os.path.exists(fn):
        return intro_markdown

    with open(metadata[selected_country][selected_language]["Intro"], "r", encoding="utf-8") as f:
        INTRO_TEXT = f.read()    
    return gr.Markdown(INTRO_TEXT)


def handle_click_example(user_examples, concepts_dict):
    print("handle_click_example")
    print(user_examples)
    ex = [item for item in user_examples]
    # print(ex)
    image_inp = ex[0]
    image_url_inp = ex[1]
    long_caption_inp = ex[2]
    country_btn = ex[3]
    language_btn = ex[4]
    category_btn = ex[5]
    concept_btn = ex[6]
    additional_concepts_by_category = ex[7]
    exampleid_btn = ex[8]
    additional_concepts_by_category = [[] if (len(cat_concept)==1 and cat_concept[0]=='') else cat_concept for cat_concept in additional_concepts_by_category]
    
    # import pdb; pdb.set_trace()
    # # excluded_btn = ex[10] # TODO: add functionality that if True "exclude" button changes to "excluded"
    # # is_blurred = ex[11]
    # # Get predefined categories in the correct order
    # predefined_categories = sorted(list(concepts_dict[country_btn][lang2eng_mapping.get(language_btn, language_btn)].keys()))[:5]
    
    # # Create dropdown values for each category
    # dropdown_values = []
    # for category in predefined_categories:
    #     if additional_concepts_by_category and category in additional_concepts_by_category:
    #         dropdown_values.append(additional_concepts_by_category[category])
    #     else:
    #         dropdown_values.append(None)
    
    ### TODO: fix additional concepts not saving if categories in other language than English
    # # Get the English version of the language
    # eng_lang = lang2eng_mapping.get(language_btn, language_btn)
    
    # # Get predefined categories in the correct order
    # predefined_categories = sorted(list(concepts_dict[country_btn][eng_lang].keys()))[:5]
    
    # # Create dropdown values for each category
    # dropdown_values = []
    # for category in predefined_categories:
    #     if additional_concepts_by_category and category in additional_concepts_by_category:
    #         dropdown_values.append(additional_concepts_by_category[category])
    #     else:
    #         dropdown_values.append(None)

    # Need to return values for each category dropdown
    return [image_inp, image_url_inp, long_caption_inp, exampleid_btn, category_btn, concept_btn] + additional_concepts_by_category + [True]


def is_password_correct(hashed_password, entered_password):
    is_valid = bcrypt.checkpw(entered_password.encode(), hashed_password.encode())
    # print("password_check: ", entered_password," ", hashed_password," ", is_valid)
    return is_valid


## Face blurring functions

def detect_faces(image):
    """
    Detect faces in an image using RetinaFace.

    Args:
        image (numpy.ndarray): Input image in BGR
    
    """
    # Start timer
    start_time = time.time()
    
    # Detect faces using RetinaFace
    detection_start = time.time()
    faces = RetinaFace.detect_faces(image, threshold=0.8)
    detection_time = time.time() - detection_start

    return faces, detection_time

# Hide Faces Button
def select_faces_to_hide(image, blur_faces_ids):
    if image is None:
        return None, Modal(visible=False), Modal(visible=False), None , "", None, gr.update(value=[])
    else:        
        # Detect faces
        # import pdb; pdb.set_trace()
        face_images = image.copy()
        faces, detection_time = detect_faces(face_images)
        print(f"Detection time: {detection_time:.2f} seconds")
        # pdb.set_trace()
        # Draw detections with IDs
        for face_id, face_data in enumerate(faces.values(), start=1):
            # Get face coordinates
            facial_area = face_data['facial_area']
            x1, y1, x2, y2 = facial_area
            
            # Draw rectangle around face
            cv2.rectangle(face_images, (x1, y1), (x2, y2), (0, 0, 255), 2)
            
            # Add ID text
            cv2.putText(face_images, f"ID: {face_id}", (x1, y1 - 10),
                        cv2.FONT_HERSHEY_SIMPLEX, 0.5, (0, 0, 255), 2)
        # Update face count
        face_count = len(faces)
        blur_faces_ids = gr.update(choices=[f"Face ID: {i}" for i in range(1, face_count + 1)])
        current_faces_info = gr.State(faces)
        if face_count == 0:
            return image, Modal(visible=False), Modal(visible=True), None, "", None, gr.update(value=[])
        else:
            return image, Modal(visible=True), Modal(visible=False), face_images, str(face_count), current_faces_info, blur_faces_ids #
        
def blur_selected_faces(image, blur_faces_ids, faces_info, face_img, faces_count): # is_blurred
    if not blur_faces_ids:
        return image, Modal(visible=True), face_img, faces_count, blur_faces_ids # is_blurred
        
    faces = faces_info.value
    parsed_faces_ids = blur_faces_ids
    parsed_faces_ids = [f"face_{val.split(':')[-1].strip()}" for val in parsed_faces_ids]
    
    # Base blur amount and bounds
    MIN_BLUR = 31  # Minimum blur amount (must be odd)
    MAX_BLUR = 131  # Maximum blur amount (must be odd)
    
    blurring_start = time.time()
    # Process each face
    face_count = 0
    if faces and isinstance(faces, dict):
        
        # blur by id
        for face_key in parsed_faces_ids:
            face_count += 1
            try:
                face_data = faces[face_key]
            except KeyError:
                gr.Warning(f"⚠️ Face ID {face_key.split('_')[-1]} not found in detected faces.",  duration=5)
                return image, Modal(visible=True), face_img, faces_count, blur_faces_ids # is_blurred

            # Get bounding box coordinates
            x1, y1, x2, y2 = face_data['facial_area']
            
            # Calculate face region size
            face_width = x2 - x1
            face_height = y2 - y1
            face_size = max(face_width, face_height)
            
            # Calculate adaptive blur amount based on face size
            # Scale blur amount between MIN_BLUR and MAX_BLUR based on face size
            # Using image width as reference for scaling
            img_width = image.shape[1]
            blur_amount = int(MIN_BLUR + (MAX_BLUR - MIN_BLUR) * (face_size / img_width))
            
            # Ensure blur amount is odd
            blur_amount = blur_amount if blur_amount % 2 == 1 else blur_amount + 1
            # Ensure within bounds
            blur_amount = max(MIN_BLUR, min(MAX_BLUR, blur_amount))
            
            # Ensure the coordinates are within the image boundaries
            ih, iw = image.shape[:2]
            x1, y1 = max(0, x1), max(0, y1)
            x2, y2 = min(iw, x2), min(ih, y2)
            
            # Extract face region
            face_region = image[y1:y2, x1:x2]
            
            # Apply blur
            blurred_face = cv2.GaussianBlur(face_region, (blur_amount, blur_amount), 0)
            
            # Replace face region with blurred version
            image[y1:y2, x1:x2] = blurred_face
    
    blurring_time = time.time() - blurring_start
    # Print timing information
    print(f"Face blurring performance metrics:")
    print(f"Face blurring time: {blurring_time:.4f} seconds")
    
    if face_count == 0:
        return image, Modal(visible=True), face_img, faces_count, blur_faces_ids
    else:
        return image, Modal(visible=False), None, None, gr.update(value=[])

def blur_all_faces(image):
    if image is None:
        return None, Modal(visible=False)
    else:
        # Base blur amount and bounds
        MIN_BLUR = 31  # Minimum blur amount (must be odd)
        MAX_BLUR = 131  # Maximum blur amount (must be odd)
        
        # Start timer
        start_time = time.time()
        
        # Detect faces using RetinaFace
        detection_start = time.time()
        faces = RetinaFace.detect_faces(image)
        detection_time = time.time() - detection_start
        
        # Create a copy of the image
        output_image = image.copy()
        
        face_count = 0
        blurring_start = time.time()
        
        # Process each face
        if faces and isinstance(faces, dict):
            for face_key in faces:
                face_count += 1
                face_data = faces[face_key]
                
                # Get bounding box coordinates
                x1, y1, x2, y2 = face_data['facial_area']
                
                # Calculate face region size
                face_width = x2 - x1
                face_height = y2 - y1
                face_size = max(face_width, face_height)
                
                # Calculate adaptive blur amount based on face size
                # Scale blur amount between MIN_BLUR and MAX_BLUR based on face size
                # Using image width as reference for scaling
                img_width = image.shape[1]
                blur_amount = int(MIN_BLUR + (MAX_BLUR - MIN_BLUR) * (face_size / img_width))
                
                # Ensure blur amount is odd
                blur_amount = blur_amount if blur_amount % 2 == 1 else blur_amount + 1
                # Ensure within bounds
                blur_amount = max(MIN_BLUR, min(MAX_BLUR, blur_amount))
                
                # Ensure the coordinates are within the image boundaries
                ih, iw = image.shape[:2]
                x1, y1 = max(0, x1), max(0, y1)
                x2, y2 = min(iw, x2), min(ih, y2)
                
                # Extract face region
                face_region = output_image[y1:y2, x1:x2]
                
                # Apply blur
                blurred_face = cv2.GaussianBlur(face_region, (blur_amount, blur_amount), 0)
                
                # Replace face region with blurred version
                output_image[y1:y2, x1:x2] = blurred_face
        
        blurring_time = time.time() - blurring_start
        total_time = time.time() - start_time
        # Print timing information
        print(f"Face blurring performance metrics:")
        print(f"Total faces detected: {face_count}")
        print(f"Face detection time: {detection_time:.4f} seconds")
        print(f"Face blurring time: {blurring_time:.4f} seconds")
        print(f"Total processing time: {total_time:.4f} seconds")
        print(f"Average time per face: {(total_time/max(1, face_count)):.4f} seconds")

        if face_count == 0:
            return image, Modal(visible=True)
        else:
            return output_image, Modal(visible=False)
        
def unhide_faces(img, ori_img): # is_blurred
    if img is None:
        return None
    elif np.array_equal(img, ori_img.value):
        return img # is_blurred
    else:
        return ori_img.value
    
def check_exclude_fn(image):
    if image is None:
        gr.Warning("⚠️ No image to exclude.")
        return gr.update(visible=False)
    else:
        return gr.update(visible=True)
    
def has_user_json(username, country,language_choice, local_ds_directory_path):
    """Check if JSON files exist for username pattern."""
    return bool(glob.glob(os.path.join(local_ds_directory_path, "logged_in_users", country, language_choice, username, "**", "*.json"), recursive=True))