File size: 1,921 Bytes
8ee35af
 
 
 
 
64116c6
 
 
8ee35af
 
 
 
 
 
64116c6
8ee35af
 
64116c6
8ee35af
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
import gradio as gr
import numpy as np
import onnxruntime as ort
from transformers import AutoTokenizer, AutoModelForCausalLM
import torch
from huggingface_hub import hf_hub_download, HfFolder

token = HfFolder.get_token() or os.getenv("HF_TOKEN")

HF_MODEL_ID = "mistralai/Mistral-Nemo-Instruct-2407"
HF_ONNX_REPO = "techAInewb/mistral-nemo-2407-fp32"
ONNX_MODEL_FILE = "model.onnx"

# Load tokenizer
tokenizer = AutoTokenizer.from_pretrained(HF_MODEL_ID, token=token)

# Load PyTorch model
pt_model = AutoModelForCausalLM.from_pretrained(HF_MODEL_ID, torch_dtype=torch.float32, token=token)
pt_model.eval()

# Load ONNX model
onnx_path = hf_hub_download(repo_id=HF_ONNX_REPO, filename=ONNX_MODEL_FILE)
onnx_session = ort.InferenceSession(onnx_path, providers=["CPUExecutionProvider"])

def compare_outputs(prompt):
    inputs = tokenizer(prompt, return_tensors="np", padding=False)
    torch_inputs = tokenizer(prompt, return_tensors="pt")

    # Run PyTorch
    with torch.no_grad():
        pt_outputs = pt_model(**torch_inputs).logits
    pt_top = torch.topk(pt_outputs[0, -1], 5).indices.tolist()

    # Run ONNX
    ort_outputs = onnx_session.run(None, {
        "input_ids": inputs["input_ids"],
        "attention_mask": inputs["attention_mask"]
    })
    ort_logits = ort_outputs[0]
    ort_top = np.argsort(ort_logits[0, -1])[::-1][:5].tolist()

    pt_tokens = tokenizer.convert_ids_to_tokens(pt_top)
    ort_tokens = tokenizer.convert_ids_to_tokens(ort_top)

    return f"PyTorch Top Tokens: {pt_tokens}", f"ONNX Top Tokens: {ort_tokens}"

iface = gr.Interface(fn=compare_outputs,
                     inputs=gr.Textbox(lines=2, placeholder="Enter a prompt..."),
                     outputs=["text", "text"],
                     title="ONNX vs PyTorch Model Comparison",
                     description="Run both PyTorch and ONNX inference on a prompt and compare top predicted tokens.")

iface.launch()