Spaces:
No application file
No application file
File size: 1,921 Bytes
8ee35af 64116c6 8ee35af 64116c6 8ee35af 64116c6 8ee35af |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 |
import gradio as gr
import numpy as np
import onnxruntime as ort
from transformers import AutoTokenizer, AutoModelForCausalLM
import torch
from huggingface_hub import hf_hub_download, HfFolder
token = HfFolder.get_token() or os.getenv("HF_TOKEN")
HF_MODEL_ID = "mistralai/Mistral-Nemo-Instruct-2407"
HF_ONNX_REPO = "techAInewb/mistral-nemo-2407-fp32"
ONNX_MODEL_FILE = "model.onnx"
# Load tokenizer
tokenizer = AutoTokenizer.from_pretrained(HF_MODEL_ID, token=token)
# Load PyTorch model
pt_model = AutoModelForCausalLM.from_pretrained(HF_MODEL_ID, torch_dtype=torch.float32, token=token)
pt_model.eval()
# Load ONNX model
onnx_path = hf_hub_download(repo_id=HF_ONNX_REPO, filename=ONNX_MODEL_FILE)
onnx_session = ort.InferenceSession(onnx_path, providers=["CPUExecutionProvider"])
def compare_outputs(prompt):
inputs = tokenizer(prompt, return_tensors="np", padding=False)
torch_inputs = tokenizer(prompt, return_tensors="pt")
# Run PyTorch
with torch.no_grad():
pt_outputs = pt_model(**torch_inputs).logits
pt_top = torch.topk(pt_outputs[0, -1], 5).indices.tolist()
# Run ONNX
ort_outputs = onnx_session.run(None, {
"input_ids": inputs["input_ids"],
"attention_mask": inputs["attention_mask"]
})
ort_logits = ort_outputs[0]
ort_top = np.argsort(ort_logits[0, -1])[::-1][:5].tolist()
pt_tokens = tokenizer.convert_ids_to_tokens(pt_top)
ort_tokens = tokenizer.convert_ids_to_tokens(ort_top)
return f"PyTorch Top Tokens: {pt_tokens}", f"ONNX Top Tokens: {ort_tokens}"
iface = gr.Interface(fn=compare_outputs,
inputs=gr.Textbox(lines=2, placeholder="Enter a prompt..."),
outputs=["text", "text"],
title="ONNX vs PyTorch Model Comparison",
description="Run both PyTorch and ONNX inference on a prompt and compare top predicted tokens.")
iface.launch()
|