Spaces:
Paused
Paused
| # coding=utf-8 | |
| # Copyright 2020 Huggingface | |
| # | |
| # Licensed under the Apache License, Version 2.0 (the "License"); | |
| # you may not use this file except in compliance with the License. | |
| # You may obtain a copy of the License at | |
| # | |
| # http://www.apache.org/licenses/LICENSE-2.0 | |
| # | |
| # Unless required by applicable law or agreed to in writing, software | |
| # distributed under the License is distributed on an "AS IS" BASIS, | |
| # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
| # See the License for the specific language governing permissions and | |
| # limitations under the License. | |
| import tempfile | |
| import unittest | |
| from transformers import DPRConfig, is_torch_available | |
| from transformers.testing_utils import require_torch, slow, torch_device | |
| from ...test_configuration_common import ConfigTester | |
| from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask | |
| from ...test_pipeline_mixin import PipelineTesterMixin | |
| if is_torch_available(): | |
| import torch | |
| from transformers import DPRContextEncoder, DPRQuestionEncoder, DPRReader, DPRReaderTokenizer | |
| from transformers.models.dpr.modeling_dpr import ( | |
| DPR_CONTEXT_ENCODER_PRETRAINED_MODEL_ARCHIVE_LIST, | |
| DPR_QUESTION_ENCODER_PRETRAINED_MODEL_ARCHIVE_LIST, | |
| DPR_READER_PRETRAINED_MODEL_ARCHIVE_LIST, | |
| ) | |
| class DPRModelTester: | |
| def __init__( | |
| self, | |
| parent, | |
| batch_size=13, | |
| seq_length=7, | |
| is_training=False, | |
| use_input_mask=True, | |
| use_token_type_ids=True, | |
| use_labels=True, | |
| vocab_size=99, | |
| hidden_size=32, | |
| num_hidden_layers=2, | |
| num_attention_heads=4, | |
| intermediate_size=37, | |
| hidden_act="gelu", | |
| hidden_dropout_prob=0.1, | |
| attention_probs_dropout_prob=0.1, | |
| max_position_embeddings=512, | |
| type_vocab_size=16, | |
| type_sequence_label_size=2, | |
| initializer_range=0.02, | |
| num_labels=3, | |
| num_choices=4, | |
| scope=None, | |
| projection_dim=0, | |
| ): | |
| self.parent = parent | |
| self.batch_size = batch_size | |
| self.seq_length = seq_length | |
| self.is_training = is_training | |
| self.use_input_mask = use_input_mask | |
| self.use_token_type_ids = use_token_type_ids | |
| self.use_labels = use_labels | |
| self.vocab_size = vocab_size | |
| self.hidden_size = hidden_size | |
| self.num_hidden_layers = num_hidden_layers | |
| self.num_attention_heads = num_attention_heads | |
| self.intermediate_size = intermediate_size | |
| self.hidden_act = hidden_act | |
| self.hidden_dropout_prob = hidden_dropout_prob | |
| self.attention_probs_dropout_prob = attention_probs_dropout_prob | |
| self.max_position_embeddings = max_position_embeddings | |
| self.type_vocab_size = type_vocab_size | |
| self.type_sequence_label_size = type_sequence_label_size | |
| self.initializer_range = initializer_range | |
| self.num_labels = num_labels | |
| self.num_choices = num_choices | |
| self.scope = scope | |
| self.projection_dim = projection_dim | |
| def prepare_config_and_inputs(self): | |
| input_ids = ids_tensor([self.batch_size, self.seq_length], self.vocab_size) | |
| input_mask = None | |
| if self.use_input_mask: | |
| input_mask = random_attention_mask([self.batch_size, self.seq_length]) | |
| token_type_ids = None | |
| if self.use_token_type_ids: | |
| token_type_ids = ids_tensor([self.batch_size, self.seq_length], self.type_vocab_size) | |
| sequence_labels = None | |
| token_labels = None | |
| choice_labels = None | |
| if self.use_labels: | |
| sequence_labels = ids_tensor([self.batch_size], self.type_sequence_label_size) | |
| token_labels = ids_tensor([self.batch_size, self.seq_length], self.num_labels) | |
| choice_labels = ids_tensor([self.batch_size], self.num_choices) | |
| config = self.get_config() | |
| return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels | |
| def get_config(self): | |
| return DPRConfig( | |
| projection_dim=self.projection_dim, | |
| vocab_size=self.vocab_size, | |
| hidden_size=self.hidden_size, | |
| num_hidden_layers=self.num_hidden_layers, | |
| num_attention_heads=self.num_attention_heads, | |
| intermediate_size=self.intermediate_size, | |
| hidden_act=self.hidden_act, | |
| hidden_dropout_prob=self.hidden_dropout_prob, | |
| attention_probs_dropout_prob=self.attention_probs_dropout_prob, | |
| max_position_embeddings=self.max_position_embeddings, | |
| type_vocab_size=self.type_vocab_size, | |
| initializer_range=self.initializer_range, | |
| ) | |
| def create_and_check_context_encoder( | |
| self, config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels | |
| ): | |
| model = DPRContextEncoder(config=config) | |
| model.to(torch_device) | |
| model.eval() | |
| result = model(input_ids, attention_mask=input_mask, token_type_ids=token_type_ids) | |
| result = model(input_ids, token_type_ids=token_type_ids) | |
| result = model(input_ids) | |
| self.parent.assertEqual(result.pooler_output.shape, (self.batch_size, self.projection_dim or self.hidden_size)) | |
| def create_and_check_question_encoder( | |
| self, config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels | |
| ): | |
| model = DPRQuestionEncoder(config=config) | |
| model.to(torch_device) | |
| model.eval() | |
| result = model(input_ids, attention_mask=input_mask, token_type_ids=token_type_ids) | |
| result = model(input_ids, token_type_ids=token_type_ids) | |
| result = model(input_ids) | |
| self.parent.assertEqual(result.pooler_output.shape, (self.batch_size, self.projection_dim or self.hidden_size)) | |
| def create_and_check_reader( | |
| self, config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels | |
| ): | |
| model = DPRReader(config=config) | |
| model.to(torch_device) | |
| model.eval() | |
| result = model( | |
| input_ids, | |
| attention_mask=input_mask, | |
| ) | |
| self.parent.assertEqual(result.start_logits.shape, (self.batch_size, self.seq_length)) | |
| self.parent.assertEqual(result.end_logits.shape, (self.batch_size, self.seq_length)) | |
| self.parent.assertEqual(result.relevance_logits.shape, (self.batch_size,)) | |
| def prepare_config_and_inputs_for_common(self): | |
| config_and_inputs = self.prepare_config_and_inputs() | |
| ( | |
| config, | |
| input_ids, | |
| token_type_ids, | |
| input_mask, | |
| sequence_labels, | |
| token_labels, | |
| choice_labels, | |
| ) = config_and_inputs | |
| inputs_dict = {"input_ids": input_ids} | |
| return config, inputs_dict | |
| class DPRModelTest(ModelTesterMixin, PipelineTesterMixin, unittest.TestCase): | |
| all_model_classes = ( | |
| ( | |
| DPRContextEncoder, | |
| DPRQuestionEncoder, | |
| DPRReader, | |
| ) | |
| if is_torch_available() | |
| else () | |
| ) | |
| pipeline_model_mapping = {"feature-extraction": DPRQuestionEncoder} if is_torch_available() else {} | |
| test_resize_embeddings = False | |
| test_missing_keys = False # why? | |
| test_pruning = False | |
| test_head_masking = False | |
| def setUp(self): | |
| self.model_tester = DPRModelTester(self) | |
| self.config_tester = ConfigTester(self, config_class=DPRConfig, hidden_size=37) | |
| def test_config(self): | |
| self.config_tester.run_common_tests() | |
| def test_context_encoder_model(self): | |
| config_and_inputs = self.model_tester.prepare_config_and_inputs() | |
| self.model_tester.create_and_check_context_encoder(*config_and_inputs) | |
| def test_question_encoder_model(self): | |
| config_and_inputs = self.model_tester.prepare_config_and_inputs() | |
| self.model_tester.create_and_check_question_encoder(*config_and_inputs) | |
| def test_reader_model(self): | |
| config_and_inputs = self.model_tester.prepare_config_and_inputs() | |
| self.model_tester.create_and_check_reader(*config_and_inputs) | |
| def test_init_changed_config(self): | |
| config = self.model_tester.prepare_config_and_inputs()[0] | |
| model = DPRQuestionEncoder(config=config) | |
| model.to(torch_device) | |
| model.eval() | |
| with tempfile.TemporaryDirectory() as tmp_dirname: | |
| model.save_pretrained(tmp_dirname) | |
| model = DPRQuestionEncoder.from_pretrained(tmp_dirname, projection_dim=512) | |
| self.assertIsNotNone(model) | |
| def test_model_from_pretrained(self): | |
| for model_name in DPR_CONTEXT_ENCODER_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: | |
| model = DPRContextEncoder.from_pretrained(model_name) | |
| self.assertIsNotNone(model) | |
| for model_name in DPR_CONTEXT_ENCODER_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: | |
| model = DPRContextEncoder.from_pretrained(model_name) | |
| self.assertIsNotNone(model) | |
| for model_name in DPR_QUESTION_ENCODER_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: | |
| model = DPRQuestionEncoder.from_pretrained(model_name) | |
| self.assertIsNotNone(model) | |
| for model_name in DPR_READER_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: | |
| model = DPRReader.from_pretrained(model_name) | |
| self.assertIsNotNone(model) | |
| class DPRModelIntegrationTest(unittest.TestCase): | |
| def test_inference_no_head(self): | |
| model = DPRQuestionEncoder.from_pretrained("facebook/dpr-question_encoder-single-nq-base", return_dict=False) | |
| model.to(torch_device) | |
| input_ids = torch.tensor( | |
| [[101, 7592, 1010, 2003, 2026, 3899, 10140, 1029, 102]], dtype=torch.long, device=torch_device | |
| ) # [CLS] hello, is my dog cute? [SEP] | |
| output = model(input_ids)[0] # embedding shape = (1, 768) | |
| # compare the actual values for a slice. | |
| expected_slice = torch.tensor( | |
| [ | |
| [ | |
| 0.03236253, | |
| 0.12753335, | |
| 0.16818509, | |
| 0.00279786, | |
| 0.3896933, | |
| 0.24264945, | |
| 0.2178971, | |
| -0.02335227, | |
| -0.08481959, | |
| -0.14324117, | |
| ] | |
| ], | |
| dtype=torch.float, | |
| device=torch_device, | |
| ) | |
| self.assertTrue(torch.allclose(output[:, :10], expected_slice, atol=1e-4)) | |
| def test_reader_inference(self): | |
| tokenizer = DPRReaderTokenizer.from_pretrained("facebook/dpr-reader-single-nq-base") | |
| model = DPRReader.from_pretrained("facebook/dpr-reader-single-nq-base") | |
| model.to(torch_device) | |
| encoded_inputs = tokenizer( | |
| questions="What is love ?", | |
| titles="Haddaway", | |
| texts="What Is Love is a song recorded by the artist Haddaway", | |
| padding=True, | |
| return_tensors="pt", | |
| ) | |
| encoded_inputs.to(torch_device) | |
| outputs = model(**encoded_inputs) | |
| # compare the actual values for a slice. | |
| expected_start_logits = torch.tensor( | |
| [[-10.3005, -10.7765, -11.4872, -11.6841, -11.9312, -10.3002, -9.8544, -11.7378, -12.0821, -10.2975]], | |
| dtype=torch.float, | |
| device=torch_device, | |
| ) | |
| expected_end_logits = torch.tensor( | |
| [[-11.0684, -11.7041, -11.5397, -10.3465, -10.8791, -6.8443, -11.9959, -11.0364, -10.0096, -6.8405]], | |
| dtype=torch.float, | |
| device=torch_device, | |
| ) | |
| self.assertTrue(torch.allclose(outputs.start_logits[:, :10], expected_start_logits, atol=1e-4)) | |
| self.assertTrue(torch.allclose(outputs.end_logits[:, :10], expected_end_logits, atol=1e-4)) | |