Spaces:
Paused
Paused
| # coding=utf-8 | |
| # Copyright 2018 The Google AI Language Team Authors, Allegro.pl and The HuggingFace Inc. team. | |
| # | |
| # Licensed under the Apache License, Version 2.0 (the "License"); | |
| # you may not use this file except in compliance with the License. | |
| # You may obtain a copy of the License at | |
| # | |
| # http://www.apache.org/licenses/LICENSE-2.0 | |
| # | |
| # Unless required by applicable law or agreed to in writing, software | |
| # distributed under the License is distributed on an "AS IS" BASIS, | |
| # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
| # See the License for the specific language governing permissions and | |
| # limitations under the License. | |
| import json | |
| import os | |
| import unittest | |
| from transformers import HerbertTokenizer, HerbertTokenizerFast | |
| from transformers.models.herbert.tokenization_herbert import VOCAB_FILES_NAMES | |
| from transformers.testing_utils import get_tests_dir, require_tokenizers, slow | |
| from ...test_tokenization_common import TokenizerTesterMixin | |
| class HerbertTokenizationTest(TokenizerTesterMixin, unittest.TestCase): | |
| tokenizer_class = HerbertTokenizer | |
| rust_tokenizer_class = HerbertTokenizerFast | |
| test_rust_tokenizer = True | |
| def setUp(self): | |
| super().setUp() | |
| # Use a simpler test file without japanese/chinese characters | |
| with open(f"{get_tests_dir()}/fixtures/sample_text_no_unicode.txt", encoding="utf-8") as f_data: | |
| self._data = f_data.read().replace("\n\n", "\n").strip() | |
| vocab = [ | |
| "<s>", | |
| "</s>", | |
| "l", | |
| "o", | |
| "w", | |
| "e", | |
| "r", | |
| "s", | |
| "t", | |
| "i", | |
| "d", | |
| "n", | |
| "w</w>", | |
| "r</w>", | |
| "t</w>", | |
| "lo", | |
| "low", | |
| "er</w>", | |
| "low</w>", | |
| "lowest</w>", | |
| "newer</w>", | |
| "wider</w>", | |
| ",</w>", | |
| "<unk>", | |
| ] | |
| vocab_tokens = dict(zip(vocab, range(len(vocab)))) | |
| merges = ["l o 123", "lo w 1456", "e r</w> 1789", ""] | |
| self.vocab_file = os.path.join(self.tmpdirname, VOCAB_FILES_NAMES["vocab_file"]) | |
| self.merges_file = os.path.join(self.tmpdirname, VOCAB_FILES_NAMES["merges_file"]) | |
| with open(self.vocab_file, "w") as fp: | |
| fp.write(json.dumps(vocab_tokens)) | |
| with open(self.merges_file, "w") as fp: | |
| fp.write("\n".join(merges)) | |
| def get_input_output_texts(self, tokenizer): | |
| input_text = "lower newer" | |
| output_text = "lower newer" | |
| return input_text, output_text | |
| def test_full_tokenizer(self): | |
| tokenizer = self.tokenizer_class(vocab_file=self.vocab_file, merges_file=self.merges_file) | |
| text = "lower" | |
| bpe_tokens = ["low", "er</w>"] | |
| tokens = tokenizer.tokenize(text) | |
| self.assertListEqual(tokens, bpe_tokens) | |
| input_tokens = tokens + ["<unk>"] | |
| input_bpe_tokens = [16, 17, 23] | |
| self.assertListEqual(tokenizer.convert_tokens_to_ids(input_tokens), input_bpe_tokens) | |
| def test_rust_and_python_full_tokenizers(self): | |
| if not self.test_rust_tokenizer: | |
| return | |
| tokenizer = self.get_tokenizer() | |
| rust_tokenizer = self.get_rust_tokenizer() | |
| sequence = "lower,newer" | |
| tokens = tokenizer.tokenize(sequence) | |
| rust_tokens = rust_tokenizer.tokenize(sequence) | |
| self.assertListEqual(tokens, rust_tokens) | |
| ids = tokenizer.encode(sequence, add_special_tokens=False) | |
| rust_ids = rust_tokenizer.encode(sequence, add_special_tokens=False) | |
| self.assertListEqual(ids, rust_ids) | |
| rust_tokenizer = self.get_rust_tokenizer() | |
| ids = tokenizer.encode(sequence) | |
| rust_ids = rust_tokenizer.encode(sequence) | |
| self.assertListEqual(ids, rust_ids) | |
| def test_sequence_builders(self): | |
| tokenizer = self.tokenizer_class.from_pretrained("allegro/herbert-base-cased") | |
| text = tokenizer.encode("konstruowanie sekwencji", add_special_tokens=False) | |
| text_2 = tokenizer.encode("konstruowanie wielu sekwencji", add_special_tokens=False) | |
| encoded_sentence = tokenizer.build_inputs_with_special_tokens(text) | |
| encoded_pair = tokenizer.build_inputs_with_special_tokens(text, text_2) | |
| assert encoded_sentence == [0] + text + [2] | |
| assert encoded_pair == [0] + text + [2] + text_2 + [2] | |