Spaces:
Running
on
A100
Running
on
A100
File size: 28,569 Bytes
43c5292 ccba969 81d86e3 43c5292 ccba969 43c5292 81d86e3 43c5292 abcd74c 43c5292 feacb84 849e547 3dac27a 849e547 feacb84 43c5292 a08d38b 43c5292 55b359a 43c5292 55b359a 43c5292 81d86e3 43c5292 23c68ff 43c5292 81d86e3 43c5292 512c1dc 81d86e3 43c5292 1881139 43c5292 f129909 43c5292 f129909 43c5292 f129909 43c5292 55b359a 43c5292 15ad850 ccba969 43c5292 967fee4 84d6cdc 967fee4 43c5292 a724e81 43c5292 a724e81 43c5292 a724e81 512c1dc a724e81 43c5292 a724e81 43c5292 a724e81 43c5292 a724e81 43c5292 a724e81 43c5292 a724e81 512c1dc a724e81 43c5292 55b359a 43c5292 a724e81 512c1dc a724e81 43c5292 81d86e3 43c5292 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 |
import os
IS_SPACE = True
if IS_SPACE:
import spaces
import sys
import warnings
import subprocess
from pathlib import Path
from typing import Optional, Tuple, Dict
import torch
def space_context(duration: int):
if IS_SPACE:
return spaces.GPU(duration=duration)
return lambda x: x
@space_context(duration=120)
def test_env():
assert torch.cuda.is_available()
try:
import flash_attn
except ImportError:
print("Flash-attn not found, installing...")
os.system("pip install flash-attn==2.7.3 --no-build-isolation")
else:
print("Flash-attn found, skipping installation...")
test_env()
warnings.filterwarnings("ignore")
# Add the current directory to Python path
sys.path.append(os.path.dirname(os.path.abspath(__file__)))
try:
import gradio as gr
from PIL import Image
from hyimage.diffusion.pipelines.hunyuanimage_pipeline import HunyuanImagePipeline
from huggingface_hub import snapshot_download
import modelscope
except ImportError as e:
print(f"Missing required dependencies: {e}")
print("Please install with: pip install -r requirements_gradio.txt")
print("For checkpoint downloads, also install: pip install -U 'huggingface_hub[cli]' modelscope")
sys.exit(1)
BASE_DIR = os.environ.get('HUNYUANIMAGE_V2_1_MODEL_ROOT', './ckpts')
class CheckpointDownloader:
"""Handles downloading of all required checkpoints for HunyuanImage."""
def __init__(self, base_dir: str = BASE_DIR):
self.base_dir = Path(base_dir)
self.base_dir.mkdir(exist_ok=True)
print(f'Downloading checkpoints to: {self.base_dir}')
# Define all required checkpoints
self.checkpoints = {
"main_model": {
"repo_id": "tencent/HunyuanImage-2.1",
"local_dir": self.base_dir,
},
"mllm_encoder": {
"repo_id": "Qwen/Qwen2.5-VL-7B-Instruct",
"local_dir": self.base_dir / "text_encoder" / "llm",
},
"byt5_encoder": {
"repo_id": "google/byt5-small",
"local_dir": self.base_dir / "text_encoder" / "byt5-small",
},
"glyph_encoder": {
"repo_id": "AI-ModelScope/Glyph-SDXL-v2",
"local_dir": self.base_dir / "text_encoder" / "Glyph-SDXL-v2",
"use_modelscope": True
}
}
def download_checkpoint(self, checkpoint_name: str, progress_callback=None) -> Tuple[bool, str]:
"""Download a specific checkpoint."""
if checkpoint_name not in self.checkpoints:
return False, f"Unknown checkpoint: {checkpoint_name}"
config = self.checkpoints[checkpoint_name]
local_dir = config["local_dir"]
local_dir.mkdir(parents=True, exist_ok=True)
try:
if config.get("use_modelscope", False):
# Use modelscope for Chinese models
return self._download_with_modelscope(config, progress_callback)
else:
# Use huggingface_hub for other models
return self._download_with_hf(config, progress_callback)
except Exception as e:
return False, f"Download failed: {str(e)}"
def _download_with_hf(self, config: Dict, progress_callback=None) -> Tuple[bool, str]:
"""Download using huggingface_hub."""
repo_id = config["repo_id"]
local_dir = config["local_dir"]
if progress_callback:
progress_callback(f"Downloading {repo_id}...")
try:
snapshot_download(
repo_id=repo_id,
local_dir=str(local_dir),
local_dir_use_symlinks=False,
resume_download=True
)
return True, f"Successfully downloaded {repo_id}"
except Exception as e:
return False, f"HF download failed: {str(e)}"
def _download_with_modelscope(self, config: Dict, progress_callback=None) -> Tuple[bool, str]:
"""Download using modelscope."""
repo_id = config["repo_id"]
local_dir = config["local_dir"]
if progress_callback:
progress_callback(f"Downloading {repo_id} via ModelScope...")
print(f"Downloading {repo_id} via ModelScope...")
try:
# Use subprocess to call modelscope CLI
cmd = [
"modelscope", "download",
"--model", repo_id,
"--local_dir", str(local_dir)
]
subprocess.run(cmd, capture_output=True, text=True, check=True)
return True, f"Successfully downloaded {repo_id} via ModelScope"
except subprocess.CalledProcessError as e:
return False, f"ModelScope download failed: {e.stderr}"
except FileNotFoundError:
return False, "ModelScope CLI not found. Install with: pip install modelscope"
def download_all_checkpoints(self, progress_callback=None) -> Tuple[bool, str, Dict[str, any]]:
"""Download all checkpoints."""
results = {}
for name, _ in self.checkpoints.items():
if progress_callback:
progress_callback(f"Starting download of {name}...")
success, message = self.download_checkpoint(name, progress_callback)
results[name] = {"success": success, "message": message}
if not success:
return False, f"Failed to download {name}: {message}", results
return True, "All checkpoints downloaded successfully", results
@space_context(duration=2000)
def load_pipeline(use_distilled: bool = False, device: str = "cuda"):
"""Load the HunyuanImage pipeline (only load once, refiner and reprompt are accessed from it)."""
try:
assert not use_distilled # use_distilled is a placeholder for the future
print(f"Loading HunyuanImage pipeline (distilled={use_distilled})...")
model_name = "hunyuanimage-v2.1-distilled" if use_distilled else "hunyuanimage-v2.1"
pipeline = HunyuanImagePipeline.from_pretrained(
model_name=model_name,
device=device,
enable_dit_offloading=True,
enable_reprompt_model_offloading=True,
enable_refiner_offloading=True
)
pipeline.to('cpu')
refiner_pipeline = pipeline.refiner_pipeline
refiner_pipeline.text_encoder.model = pipeline.text_encoder.model
refiner_pipeline.to('cpu')
reprompt_model = pipeline.reprompt_model
print("✓ Pipeline loaded successfully")
return pipeline
except Exception as e:
error_msg = f"Error loading pipeline: {str(e)}"
print(f"✗ {error_msg}")
raise
# if IS_SPACE:
# downloader = CheckpointDownloader()
# downloader.download_all_checkpoints()
pipeline = load_pipeline(use_distilled=False, device="cuda")
class HunyuanImageApp:
@space_context(duration=290)
def __init__(self, auto_load: bool = True, use_distilled: bool = False, device: str = "cuda"):
"""Initialize the HunyuanImage Gradio app."""
global pipeline
self.pipeline = pipeline
self.current_use_distilled = None
# Define aspect ratio mappings
self.aspect_ratio_mappings = {
"16:9": (2560, 1536),
"4:3": (2304, 1792),
"1:1": (2048, 2048),
"3:4": (1792, 2304),
"9:16": (1536, 2560)
}
def print_peak_memory(self):
import torch
stats = torch.cuda.memory_stats()
peak_bytes_requirement = stats["allocated_bytes.all.peak"]
print(f"Before refiner Peak memory requirement: {peak_bytes_requirement / 1024 ** 3:.2f} GB")
def update_resolution(self, aspect_ratio_choice: str) -> Tuple[int, int]:
"""Update width and height based on selected aspect ratio."""
# Extract the aspect ratio key from the choice (e.g., "16:9" from "16:9 (2560×1536)")
aspect_key = aspect_ratio_choice.split(" (")[0]
if aspect_key in self.aspect_ratio_mappings:
return self.aspect_ratio_mappings[aspect_key]
else:
# Default to 1:1 if not found
return self.aspect_ratio_mappings["1:1"]
@space_context(duration=300)
def generate_image(self,
prompt: str,
negative_prompt: str,
width: int,
height: int,
num_inference_steps: int,
guidance_scale: float,
seed: int,
use_reprompt: bool,
use_refiner: bool,
# use_distilled: bool
) -> Tuple[Optional[Image.Image], str]:
"""Generate an image using the HunyuanImage pipeline."""
try:
torch.cuda.empty_cache()
if self.pipeline is None:
return None, "Pipeline not loaded. Please try again."
if hasattr(self.pipeline, '_refiner_pipeline'):
self.pipeline.refiner_pipeline.to('cpu')
self.pipeline.to('cuda')
if seed == -1:
import random
seed = random.randint(100000, 999999)
# Generate image
image = self.pipeline(
prompt=prompt,
negative_prompt=negative_prompt,
width=width,
height=height,
num_inference_steps=num_inference_steps,
guidance_scale=guidance_scale,
seed=seed,
shift=5,
use_reprompt=use_reprompt,
use_refiner=use_refiner
)
self.print_peak_memory()
return image, "Image generated successfully!"
except Exception as e:
error_msg = f"Error generating image: {str(e)}"
print(f"✗ {error_msg}")
return None, error_msg
@space_context(duration=300)
def enhance_prompt(self, prompt: str, # use_distilled: bool
) -> Tuple[str, str]:
"""Enhance a prompt using the reprompt model."""
try:
torch.cuda.empty_cache()
# Load pipeline if needed
if self.pipeline is None:
return prompt, "Pipeline not loaded. Please try again."
self.pipeline.to('cpu')
if hasattr(self.pipeline, '_refiner_pipeline'):
self.pipeline.refiner_pipeline.to('cpu')
# Use reprompt model from the main pipeline
enhanced_prompt = self.pipeline.reprompt_model.predict(prompt)
self.print_peak_memory()
return enhanced_prompt, "Prompt enhanced successfully!"
except Exception as e:
error_msg = f"Error enhancing prompt: {str(e)}"
print(f"✗ {error_msg}")
return prompt, error_msg
@space_context(duration=300)
def refine_image(self,
image: Image.Image,
prompt: str,
width: int,
height: int,
num_inference_steps: int,
guidance_scale: float,
seed: int) -> Tuple[Optional[Image.Image], str]:
"""Refine an image using the refiner pipeline."""
try:
if image is None:
return None, "Please upload an image to refine."
if not prompt or prompt.strip() == "":
return None, "Please enter a refinement prompt."
torch.cuda.empty_cache()
# Resize image to target dimensions if needed
if image.size != (width, height):
image = image.resize((width, height), Image.Resampling.LANCZOS)
self.pipeline.to('cpu')
self.pipeline.refiner_pipeline.to('cuda')
if seed == -1:
import random
seed = random.randint(100000, 999999)
# Use refiner from the main pipeline
refined_image = self.pipeline.refiner_pipeline(
image=image,
prompt=prompt,
width=width,
height=height,
num_inference_steps=num_inference_steps,
guidance_scale=guidance_scale,
seed=seed
)
self.print_peak_memory()
return refined_image, "Image refined successfully!"
except Exception as e:
error_msg = f"Error refining image: {str(e)}"
print(f"✗ {error_msg}")
return None, error_msg
def download_single_checkpoint(self, checkpoint_name: str) -> Tuple[bool, str]:
"""Download a single checkpoint."""
try:
success, message = self.downloader.download_checkpoint(checkpoint_name)
return success, message
except Exception as e:
return False, f"Download error: {str(e)}"
def download_all_checkpoints(self) -> Tuple[bool, str, Dict[str, any]]:
"""Download all missing checkpoints."""
try:
success, message, results = self.downloader.download_all_checkpoints()
return success, message, results
except Exception as e:
return False, f"Download error: {str(e)}", {}
def create_interface(auto_load: bool = True, use_distilled: bool = False, device: str = "cuda"):
"""Create the Gradio interface."""
app = HunyuanImageApp(auto_load=auto_load, use_distilled=use_distilled, device=device)
# Custom CSS for better styling with dark mode support
css = """
.gradio-container {
max-width: 1200px !important;
margin: auto !important;
}
.tab-nav {
background: linear-gradient(90deg, #667eea 0%, #764ba2 100%);
border-radius: 10px;
padding: 10px;
margin-bottom: 20px;
}
.model-info {
background: var(--background-fill-secondary);
border: 1px solid var(--border-color-primary);
border-radius: 8px;
padding: 15px;
margin-bottom: 20px;
color: var(--body-text-color);
}
.model-info h1, .model-info h2, .model-info h3 {
color: var(--body-text-color) !important;
}
.model-info p, .model-info li {
color: var(--body-text-color) !important;
}
.model-info strong {
color: var(--body-text-color) !important;
}
"""
with gr.Blocks(css=css, title="HunyuanImage Pipeline", theme=gr.themes.Soft()) as demo:
gr.Markdown(
"""
# 🎨 HunyuanImage 2.1 Pipeline
**HunyuanImage-2.1: An Efficient Diffusion Model for High-Resolution (2K) Text-to-Image Generation**
This app provides three main functionalities:
1. **Text-to-Image Generation**: Generate high-quality images from text prompts
2. **Prompt Enhancement**: Improve your prompts using MLLM reprompting
3. **Image Refinement**: Enhance existing images with the refiner model
""",
elem_classes="model-info"
)
with gr.Tabs():
# Tab 1: Text-to-Image Generation
with gr.Tab("🖼️ Text-to-Image Generation"):
with gr.Row():
with gr.Column(scale=1):
gr.Markdown("### Generation Settings")
gr.Markdown("**Model**: HunyuanImage v2.1 (Non-distilled)")
# use_distilled = gr.Checkbox(
# label="Use Distilled Model",
# value=False,
# info="Faster generation with slightly lower quality"
# )
use_distilled = False
prompt = gr.Textbox(
label="Prompt",
placeholder="",
lines=3,
value="A cute, cartoon-style anthropomorphic penguin plush toy with fluffy fur, standing in a painting studio, wearing a red knitted scarf and a red beret with the word “Tencent” on it, holding a paintbrush with a focused expression as it paints an oil painting of the Mona Lisa, rendered in a photorealistic photographic style."
)
negative_prompt = gr.Textbox(
label="Negative Prompt",
placeholder="",
lines=2,
value=""
)
# Predefined aspect ratios
aspect_ratios = [
("16:9 (2560×1536)", "16:9"),
("4:3 (2304×1792)", "4:3"),
("1:1 (2048×2048)", "1:1"),
("3:4 (1792×2304)", "3:4"),
("9:16 (1536×2560)", "9:16")
]
aspect_ratio = gr.Radio(
choices=aspect_ratios,
value="1:1",
label="Aspect Ratio",
info="Select the aspect ratio for image generation"
)
# Hidden width and height inputs that get updated based on aspect ratio
width = gr.Number(value=2048, visible=False)
height = gr.Number(value=2048, visible=False)
with gr.Row():
num_inference_steps = gr.Slider(
minimum=10, maximum=100, step=5, value=50,
label="Inference Steps", info="More steps = better quality, slower generation"
)
guidance_scale = gr.Slider(
minimum=1.0, maximum=10.0, step=0.1, value=3.5,
label="Guidance Scale", info="How closely to follow the prompt"
)
with gr.Row():
seed = gr.Number(
label="Seed", value=-1, precision=0,
info="Random seed for reproducibility. (-1 for random seed)"
)
use_reprompt = gr.Checkbox(
label="Use Reprompt", value=True,
info="Enhance prompt automatically"
)
use_refiner = gr.Checkbox(
label="Use Refiner", value=True,
info="Apply refiner after generation ",
interactive=True
)
generate_btn = gr.Button("🎨 Generate Image", variant="primary", size="lg")
with gr.Column(scale=1):
gr.Markdown("### Generated Image")
generated_image = gr.Image(
label="Generated Image",
format="png",
show_download_button=True,
type="pil",
height=600
)
generation_status = gr.Textbox(
label="Status",
interactive=False,
value="Ready to generate"
)
# Tab 2: Prompt Enhancement
with gr.Tab("✨ Prompt Enhancement"):
with gr.Row():
with gr.Column(scale=1):
gr.Markdown("### Prompt Enhancement Settings")
gr.Markdown("**Model**: HunyuanImage v2.1 Reprompt Model")
# enhance_use_distilled = gr.Checkbox(
# label="Use Distilled Model",
# value=False,
# info="For loading the reprompt model"
# )
enhance_use_distilled = False
original_prompt = gr.Textbox(
label="Original Prompt",
placeholder="A cat sitting on a table",
lines=4,
value="A cat sitting on a table"
)
enhance_btn = gr.Button("✨ Enhance Prompt", variant="primary", size="lg")
with gr.Column(scale=1):
gr.Markdown("### Enhanced Prompt")
enhanced_prompt = gr.Textbox(
label="Enhanced Prompt",
lines=6,
interactive=False
)
enhancement_status = gr.Textbox(
label="Status",
interactive=False,
value="Ready to enhance"
)
# # Tab 3: Image Refinement
with gr.Tab("🔧 Image Refinement"):
with gr.Row():
with gr.Column(scale=1):
gr.Markdown("### Refinement Settings")
gr.Markdown("**Model**: HunyuanImage v2.1 Refiner")
input_image = gr.Image(
label="Input Image",
type="pil",
height=300
)
refine_prompt = gr.Textbox(
label="Refinement Prompt",
placeholder="Image description",
info="This prompt should describe the image content.",
lines=2,
value=""
)
with gr.Row():
refine_width = gr.Slider(
minimum=512, maximum=2048, step=64, value=2048,
label="Width", info="Output width"
)
refine_height = gr.Slider(
minimum=512, maximum=2048, step=64, value=2048,
label="Height", info="Output height"
)
with gr.Row():
refine_steps = gr.Slider(
minimum=1, maximum=20, step=1, value=4,
label="Refinement Steps", info="More steps = more refinement"
)
refine_guidance = gr.Slider(
minimum=1.0, maximum=10.0, step=0.1, value=3.5,
label="Guidance Scale", info="How strongly to follow the prompt"
)
refine_seed = gr.Number(
label="Seed", value=-1, precision=0,
info="Random seed for reproducibility"
)
refine_btn = gr.Button("🔧 Refine Image", variant="primary", size="lg")
with gr.Column(scale=1):
gr.Markdown("### Refined Image")
refined_image = gr.Image(
label="Refined Image",
type="pil",
format="png",
show_download_button=True,
height=600
)
refinement_status = gr.Textbox(
label="Status",
interactive=False,
value="Ready to refine"
)
# Event handlers
# Update width and height when aspect ratio changes
aspect_ratio.change(
fn=app.update_resolution,
inputs=[aspect_ratio],
outputs=[width, height]
)
generate_btn.click(
fn=app.generate_image,
inputs=[
prompt, negative_prompt, width, height, num_inference_steps,
guidance_scale, seed, use_reprompt, use_refiner # , use_distilled
],
outputs=[generated_image, generation_status]
)
enhance_btn.click(
fn=app.enhance_prompt,
inputs=[original_prompt],
outputs=[enhanced_prompt, enhancement_status]
)
refine_btn.click(
fn=app.refine_image,
inputs=[
input_image, refine_prompt,
refine_width, refine_height, refine_steps, refine_guidance, refine_seed
],
outputs=[refined_image, refinement_status]
)
# Additional info
gr.Markdown(
"""
### 📝 Usage Tips
**Text-to-Image Generation:**
- Use descriptive prompts with specific details
- Adjust guidance scale: higher values follow prompts more closely
- More inference steps generally produce better quality
- Enable reprompt for automatic prompt enhancement
- Enable refiner for additional quality improvement
**Prompt Enhancement:**
- Enter your basic prompt idea
- The AI will enhance it with better structure and details
- Enhanced prompts often produce better results
**Image Refinement:**
- Upload any image you want to improve
- Describe what improvements you want in the refinement prompt
- The refiner will enhance details and quality
- Works best with images generated by HunyuanImage
""",
elem_classes="model-info"
)
return demo
if __name__ == "__main__":
import argparse
# Parse command line arguments
parser = argparse.ArgumentParser(description="Launch HunyuanImage Gradio App")
parser.add_argument("--no-auto-load", action="store_true", help="Disable auto-loading pipeline on startup")
parser.add_argument("--use-distilled", action="store_true", help="Use distilled model")
parser.add_argument("--device", type=str, default="cuda", help="Device to use (cuda/cpu)")
parser.add_argument("--port", type=int, default=8081, help="Port to run the app on")
parser.add_argument("--host", type=str, default="0.0.0.0", help="Host to bind to")
args = parser.parse_args()
# Create and launch the interface
auto_load = not args.no_auto_load
demo = create_interface(auto_load=auto_load, use_distilled=args.use_distilled, device=args.device)
print("🚀 Starting HunyuanImage Gradio App...")
print(f"🔧 Auto-load pipeline: {'Yes' if auto_load else 'No'}")
print(f"🎯 Model type: {'Distilled' if args.use_distilled else 'Non-distilled'}")
print(f"💻 Device: {args.device}")
print("⚠️ Make sure you have the required model checkpoints downloaded!")
demo.launch(
server_name=args.host,
# server_port=args.port,
share=False,
show_error=True,
quiet=False,
max_threads=1, # Default: sequential processing (recommended for GPU apps)
# max_threads=4, # Enable parallel processing (requires more GPU memory)
)
|