File size: 34,992 Bytes
43c5292
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
23c68ff
43c5292
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
23c68ff
 
 
43c5292
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b9ad1cd
43c5292
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
23c68ff
43c5292
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3dac27a
 
43c5292
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
import re
import os
from dataclasses import dataclass
from typing import Optional
from einops import rearrange

from tqdm import tqdm
import loguru
import torch
from hyimage.common.config.lazy import DictConfig
from PIL import Image

from hyimage.common.config import instantiate
from hyimage.common.constants import PRECISION_TO_TYPE
from hyimage.common.format_prompt import MultilingualPromptFormat
from hyimage.models.text_encoder import PROMPT_TEMPLATE
from hyimage.models.model_zoo import HUNYUANIMAGE_REPROMPT
from hyimage.models.text_encoder.byT5 import load_glyph_byT5_v2
from hyimage.models.hunyuan.modules.hunyuanimage_dit import load_hunyuan_dit_state_dict
from hyimage.diffusion.cfg_utils import AdaptiveProjectedGuidance, rescale_noise_cfg


@dataclass
class HunyuanImagePipelineConfig:
    """
    Configuration class for HunyuanImage diffusion pipeline.

    This dataclass consolidates all configuration parameters for the pipeline,
    including model configurations (DiT, VAE, text encoder) and pipeline
    parameters (sampling steps, guidance scale, etc.).
    """

    # Model configurations
    dit_config: DictConfig
    vae_config: DictConfig
    text_encoder_config: DictConfig
    reprompt_config: DictConfig
    refiner_model_name: str = "hunyuanimage-refiner"

    enable_dit_offloading: bool = True
    enable_reprompt_model_offloading: bool = True
    enable_refiner_offloading: bool = True

    cfg_mode: str = "MIX_mode_0"
    guidance_rescale: float = 0.0

    # Pipeline parameters
    default_sampling_steps: int = 50
    # Default guidance scale, will be overridden by the guidance_scale parameter in __call__
    default_guidance_scale: float = 3.5
    # Inference shift
    shift: int = 5
    torch_dtype: str = "bf16"
    device: str = "cuda"
    version: str = ""

    @classmethod
    def create_default(cls, version: str = "v2.1", use_distilled: bool = False, **kwargs):
        """
        Create a default configuration for specified HunyuanImage version.

        Args:
            version: HunyuanImage version, only "v2.1" is supported
            use_distilled: Whether to use distilled model
            **kwargs: Additional configuration options
        """
        if version == "v2.1":
            from hyimage.models.model_zoo import (
                HUNYUANIMAGE_V2_1_DIT,
                HUNYUANIMAGE_V2_1_DIT_CFG_DISTILL,
                HUNYUANIMAGE_V2_1_VAE_32x,
                HUNYUANIMAGE_V2_1_TEXT_ENCODER,
            )
            dit_config = HUNYUANIMAGE_V2_1_DIT_CFG_DISTILL() if use_distilled else HUNYUANIMAGE_V2_1_DIT()
            return cls(
                dit_config=dit_config,
                vae_config=HUNYUANIMAGE_V2_1_VAE_32x(),
                text_encoder_config=HUNYUANIMAGE_V2_1_TEXT_ENCODER(),
                reprompt_config=HUNYUANIMAGE_REPROMPT(),
                shift=4 if use_distilled else 5,
                default_guidance_scale=3.25 if use_distilled else 3.5,
                default_sampling_steps=8 if use_distilled else 50,
                version=version,
                **kwargs
            )
        else:
            raise ValueError(f"Unsupported HunyuanImage version: {version}. Only 'v2.1' is supported")


class HunyuanImagePipeline:
    """
    User-friendly pipeline for HunyuanImage text-to-image generation.

    This pipeline provides a simple interface similar to diffusers library
    for generating high-quality images from text prompts.

    Supports HunyuanImage 2.1 version with automatic configuration.
    Both default and distilled (CFG distillation) models are supported.
    """

    def __init__(
        self,
        config: HunyuanImagePipelineConfig,
        **kwargs
    ):
        """
        Initialize the HunyuanImage diffusion pipeline.

        Args:
            config: Configuration object containing all model and pipeline settings
            **kwargs: Additional configuration options
        """
        self.config = config
        self.default_sampling_steps = config.default_sampling_steps
        self.default_guidance_scale = config.default_guidance_scale
        self.shift = config.shift
        self.torch_dtype = PRECISION_TO_TYPE[config.torch_dtype]
        self.device = config.device
        self.execution_device = config.device

        self.dit = None
        self.text_encoder = None
        self.vae = None
        self.byt5_kwargs = None
        self.prompt_format = None

        self.enable_dit_offloading = config.enable_dit_offloading
        self.enable_reprompt_model_offloading = config.enable_reprompt_model_offloading
        self.enable_refiner_offloading = config.enable_refiner_offloading


        self.cfg_mode = config.cfg_mode
        self.guidance_rescale = config.guidance_rescale

        if self.cfg_mode == "APG_mode_0":
            self.cfg_guider = AdaptiveProjectedGuidance(guidance_scale=10.0, eta=0.0,
                                                        adaptive_projected_guidance_rescale=10.0,
                                                        adaptive_projected_guidance_momentum=-0.5)
            self.apg_start_step = 10
        elif self.cfg_mode == "MIX_mode_0":
            self.cfg_guider_ocr = AdaptiveProjectedGuidance(guidance_scale=10.0, eta=0.0,
                                                            adaptive_projected_guidance_rescale=10.0,
                                                            adaptive_projected_guidance_momentum=-0.5)
            self.apg_start_step_ocr = 75

            self.cfg_guider_general = AdaptiveProjectedGuidance(guidance_scale=10.0, eta=0.0,
                                                                adaptive_projected_guidance_rescale=10.0,
                                                                adaptive_projected_guidance_momentum=-0.5)
            self.apg_start_step_general = 10

        self.ocr_mask = []


        self._load_models()

    def _load_dit(self):
        try:
            dit_config = self.config.dit_config
            self.dit = instantiate(dit_config.model)
            if dit_config.load_from:
                load_hunyuan_dit_state_dict(self.dit, dit_config.load_from, strict=True)
            else:
                raise ValueError("Must provide checkpoint path for DiT model")
            self.dit = self.dit.to(self.device, dtype=self.torch_dtype)
            self.dit.eval()
            if getattr(dit_config, "use_compile", False):
                self.dit = torch.compile(self.dit)
            loguru.logger.info("βœ“ DiT model loaded")
        except Exception as e:
            raise RuntimeError(f"Error loading DiT model: {e}") from e

    def _load_text_encoder(self):
        try:
            text_encoder_config = self.config.text_encoder_config
            if not text_encoder_config.load_from:
                raise ValueError("Must provide checkpoint path for text encoder")

            if text_encoder_config.prompt_template is not None:
                prompt_template = PROMPT_TEMPLATE[text_encoder_config.prompt_template]
                crop_start = prompt_template.get("crop_start", 0)
            else:
                crop_start = 0
                prompt_template = None
            max_length = text_encoder_config.text_len + crop_start

            self.text_encoder = instantiate(
                text_encoder_config.model,
                max_length=max_length,
                text_encoder_path=os.path.join(text_encoder_config.load_from, "llm"),
                prompt_template=prompt_template,
                logger=None,
                device=self.device,
            )
            loguru.logger.info("βœ“ HunyuanImage text encoder loaded")
        except Exception as e:
            raise RuntimeError(f"Error loading text encoder: {e}") from e

    def _load_vae(self):
        try:
            vae_config = self.config.vae_config
            self.vae = instantiate(
                vae_config.model,
                vae_path=vae_config.load_from,
            )
            self.vae = self.vae.to(self.device)
            loguru.logger.info("βœ“ VAE loaded")
        except Exception as e:
            raise RuntimeError(f"Error loading VAE: {e}") from e

    def _load_reprompt_model(self):
        try:
            reprompt_config = self.config.reprompt_config
            self._reprompt_model = instantiate(reprompt_config.model, models_root_path=reprompt_config.load_from, enable_offloading=self.enable_reprompt_model_offloading)
            loguru.logger.info("βœ“ Reprompt model loaded")
        except Exception as e:
            raise RuntimeError(f"Error loading reprompt model: {e}") from e

    @property
    def refiner_pipeline(self):
        """
        As the refiner model is an optional component, we load it on demand.
        """
        if hasattr(self, '_refiner_pipeline') and self._refiner_pipeline is not None:
            return self._refiner_pipeline
        from hyimage.diffusion.pipelines.hunyuanimage_refiner_pipeline import HunYuanImageRefinerPipeline
        self._refiner_pipeline = HunYuanImageRefinerPipeline.from_pretrained(self.config.refiner_model_name)
        return self._refiner_pipeline

    @property
    def reprompt_model(self):
        """
        As the reprompt model is an optional component, we load it on demand.
        """
        if hasattr(self, '_reprompt_model') and self._reprompt_model is not None:
            return self._reprompt_model
        self._load_reprompt_model()
        return self._reprompt_model

    def _load_byt5(self):

        assert self.dit is not None, "DiT model must be loaded before byT5"

        if not self.use_byt5:
            self.byt5_kwargs = None
            self.prompt_format = None
            return

        try:

            text_encoder_config = self.config.text_encoder_config

            glyph_root = os.path.join(self.config.text_encoder_config.load_from, "Glyph-SDXL-v2")
            if not os.path.exists(glyph_root):
                raise RuntimeError(
                    f"Glyph checkpoint not found from '{glyph_root}'. \n"
                    "Please download from https://modelscope.cn/models/AI-ModelScope/Glyph-SDXL-v2/files.\n\n"
                    "- Required files:\n"
                    "    Glyph-SDXL-v2\n"
                    "    β”œβ”€β”€ assets\n"
                    "    β”‚Β Β  β”œβ”€β”€ color_idx.json\n"
                    "    β”‚Β Β  └── multilingual_10-lang_idx.json\n"
                    "    └── checkpoints\n"
                    "        └── byt5_model.pt\n"
                )
                    

            byT5_google_path = os.path.join(text_encoder_config.load_from, "byt5-small")
            if not os.path.exists(byT5_google_path):
                loguru.logger.warning(f"ByT5 google path not found from: {byT5_google_path}. Try downloading from https://huggingface.co/google/byt5-small.")
                byT5_google_path = "google/byt5-small"


            multilingual_prompt_format_color_path = os.path.join(glyph_root, "assets/color_idx.json")
            multilingual_prompt_format_font_path = os.path.join(glyph_root, "assets/multilingual_10-lang_idx.json")

            byt5_args = dict(
                byT5_google_path=byT5_google_path,
                byT5_ckpt_path=os.path.join(glyph_root, "checkpoints/byt5_model.pt"),
                multilingual_prompt_format_color_path=multilingual_prompt_format_color_path,
                multilingual_prompt_format_font_path=multilingual_prompt_format_font_path,
                byt5_max_length=128
            )

            self.byt5_kwargs = load_glyph_byT5_v2(byt5_args, device=self.device)
            self.prompt_format = MultilingualPromptFormat(
                font_path=multilingual_prompt_format_font_path,
                color_path=multilingual_prompt_format_color_path
            )
            loguru.logger.info("βœ“ byT5 glyph processor loaded")
        except Exception as e:
            raise RuntimeError("Error loading byT5 glyph processor") from e

    def _load_models(self):
        """
        Load all model components.
        """
        loguru.logger.info("Loading HunyuanImage models...")
        self._load_vae()
        self._load_dit()
        self._load_byt5()
        self._load_text_encoder()


    def _encode_text(self, prompt: str, data_type: str = "image"):
        """
        Encode text prompt to embeddings.

        Args:
            prompt: The text prompt
            data_type: The type of data ("image" by default)

        Returns:
            Tuple of (text_emb, text_mask)
        """
        text_inputs = self.text_encoder.text2tokens(prompt)
        with torch.no_grad():
            text_outputs = self.text_encoder.encode(
                text_inputs,
                data_type=data_type,
            )
            text_emb = text_outputs.hidden_state
            text_mask = text_outputs.attention_mask
        return text_emb, text_mask

    def _encode_glyph(self, prompt: str):
        """
        Encode glyph information using byT5.

        Args:
            prompt: The text prompt

        Returns:
            Tuple of (byt5_emb, byt5_mask)
        """
        if not self.use_byt5:
            return None, None

        if not prompt:
            return (
                torch.zeros((1, self.byt5_kwargs["byt5_max_length"], 1472), device=self.device),
                torch.zeros((1, self.byt5_kwargs["byt5_max_length"]), device=self.device, dtype=torch.int64)
            )

        try:
            text_prompt_texts = []
            pattern_quote_double = r'\"(.*?)\"'
            pattern_quote_chinese_single = r'β€˜(.*?)’'
            pattern_quote_chinese_double = r'β€œ(.*?)”'

            matches_quote_double = re.findall(pattern_quote_double, prompt)
            matches_quote_chinese_single = re.findall(pattern_quote_chinese_single, prompt)
            matches_quote_chinese_double = re.findall(pattern_quote_chinese_double, prompt)

            text_prompt_texts.extend(matches_quote_double)
            text_prompt_texts.extend(matches_quote_chinese_single)
            text_prompt_texts.extend(matches_quote_chinese_double)

            if not text_prompt_texts:
                self.ocr_mask = [False]
                return (
                    torch.zeros((1, self.byt5_kwargs["byt5_max_length"], 1472), device=self.device),
                    torch.zeros((1, self.byt5_kwargs["byt5_max_length"]), device=self.device, dtype=torch.int64)
                )
            self.ocr_mask = [True]

            text_prompt_style_list = [{'color': None, 'font-family': None} for _ in range(len(text_prompt_texts))]
            glyph_text_formatted = self.prompt_format.format_prompt(text_prompt_texts, text_prompt_style_list)

            byt5_text_ids, byt5_text_mask = self._get_byt5_text_tokens(
                self.byt5_kwargs["byt5_tokenizer"],
                self.byt5_kwargs["byt5_max_length"],
                glyph_text_formatted
            )

            byt5_text_ids = byt5_text_ids.to(device=self.device)
            byt5_text_mask = byt5_text_mask.to(device=self.device)

            byt5_prompt_embeds = self.byt5_kwargs["byt5_model"](
                byt5_text_ids, attention_mask=byt5_text_mask.float()
            )
            byt5_emb = byt5_prompt_embeds[0]

            return byt5_emb, byt5_text_mask
        except Exception as e:
            loguru.logger.warning(f"Warning: Error in glyph encoding, using fallback: {e}")
            return (
                torch.zeros((1, self.byt5_kwargs["byt5_max_length"], 1472), device=self.device),
                torch.zeros((1, self.byt5_kwargs["byt5_max_length"]), device=self.device, dtype=torch.int64)
            )

    def _get_byt5_text_tokens(self, tokenizer, max_length, text_list):
        """
        Get byT5 text tokens.

        Args:
            tokenizer: The tokenizer object
            max_length: Maximum token length
            text_list: List or string of text

        Returns:
            Tuple of (byt5_text_ids, byt5_text_mask)
        """
        if isinstance(text_list, list):
            text_prompt = " ".join(text_list)
        else:
            text_prompt = text_list

        byt5_text_inputs = tokenizer(
            text_prompt,
            padding="max_length",
            max_length=max_length,
            truncation=True,
            add_special_tokens=True,
            return_tensors="pt",
        )

        byt5_text_ids = byt5_text_inputs.input_ids
        byt5_text_mask = byt5_text_inputs.attention_mask

        return byt5_text_ids, byt5_text_mask

    def _prepare_latents(self, width: int, height: int, generator: torch.Generator, batch_size: int = 1, vae_downsampling_factor: int = 32):
        """
        Prepare initial noise latents.

        Args:
            width: Image width
            height: Image height
            generator: Torch random generator
            batch_size: Batch size

        Returns:
            Latent tensor
        """
        assert width % vae_downsampling_factor == 0 and height % vae_downsampling_factor == 0, (
            f"width and height must be divisible by {vae_downsampling_factor}, but got {width} and {height}"
        )
        latent_width = width // vae_downsampling_factor
        latent_height = height // vae_downsampling_factor
        latent_channels = 64

        if len(self.dit.patch_size) == 3:
            latent_shape = (batch_size, latent_channels, 1, latent_height, latent_width)
        elif len(self.dit.patch_size) == 2:
            latent_shape = (batch_size, latent_channels, latent_height, latent_width)
        else:
            raise ValueError(f"Unsupported patch_size: {self.dit.patch_size}")

        
        # Generate random noise with shape latent_shape
        latents = torch.randn(
            latent_shape,
            device=generator.device,
            dtype=self.torch_dtype,
            generator=generator,
        ).to(device=self.device)

        return latents

    def _denoise_step(self, latents, timesteps, text_emb, text_mask, byt5_emb, byt5_mask, guidance_scale: float = 1.0, timesteps_r=None):
        """
        Perform one denoising step.

        Args:
            latents: Latent tensor
            timesteps: Timesteps tensor
            text_emb: Text embedding
            text_mask: Text mask
            byt5_emb: byT5 embedding
            byt5_mask: byT5 mask
            guidance_scale: Guidance scale
            timesteps_r: Optional next timestep

        Returns:
            Noise prediction tensor
        """
        if byt5_emb is not None and byt5_mask is not None:
            extra_kwargs = {
                "byt5_text_states": byt5_emb,
                "byt5_text_mask": byt5_mask,
            }
        else:
            if self.use_byt5:
                raise ValueError("Must provide byt5_emb and byt5_mask for HunyuanImage 2.1")
            extra_kwargs = {}

        with torch.no_grad(), torch.autocast(device_type="cuda", dtype=torch.bfloat16, enabled=True):
            if hasattr(self.dit, 'guidance_embed') and self.dit.guidance_embed:
                guidance_expand = torch.tensor(
                    [guidance_scale] * latents.shape[0],
                    dtype=torch.float32,
                    device=latents.device
                ).to(latents.dtype) * 1000
            else:
                guidance_expand = None

            noise_pred = self.dit(
                latents,
                timesteps,
                text_states=text_emb,
                encoder_attention_mask=text_mask,
                guidance=guidance_expand,
                return_dict=False,
                extra_kwargs=extra_kwargs,
                timesteps_r=timesteps_r,
            )[0]

        return noise_pred

    def _apply_classifier_free_guidance(self, noise_pred, guidance_scale: float, i: int):
        """
        Apply classifier-free guidance.

        Args:
            noise_pred: Noise prediction tensor
            guidance_scale: Guidance scale

        Returns:
            Guided noise prediction tensor
        """
        if guidance_scale == 1.0:
            return noise_pred

        noise_pred_uncond, noise_pred_text = noise_pred.chunk(2)


        if self.cfg_mode.startswith("APG_mode_"):
            if i <= self.apg_start_step:
                noise_pred = noise_pred_uncond + guidance_scale * (
                        noise_pred_text - noise_pred_uncond
                )
                _ = self.cfg_guider(noise_pred_text, noise_pred_uncond, step=i)
            else:
                noise_pred = self.cfg_guider(noise_pred_text, noise_pred_uncond, step=i)
        elif self.cfg_mode.startswith("MIX_mode_"):

            ocr_mask_bool = torch.tensor(self.ocr_mask, dtype=torch.bool)

            true_idx = torch.where(ocr_mask_bool)[0]
            false_idx = torch.where(~ocr_mask_bool)[0]

            noise_pred_text_true = noise_pred_text[true_idx] if len(true_idx) > 0 else \
                torch.empty((0, noise_pred_text.size(1)), dtype=noise_pred_text.dtype, device=noise_pred_text.device)
            noise_pred_text_false = noise_pred_text[false_idx] if len(false_idx) > 0 else \
                torch.empty((0, noise_pred_text.size(1)), dtype=noise_pred_text.dtype, device=noise_pred_text.device)

            noise_pred_uncond_true = noise_pred_uncond[true_idx] if len(true_idx) > 0 else \
                torch.empty((0, noise_pred_uncond.size(1)), dtype=noise_pred_uncond.dtype, device=noise_pred_uncond.device)
            noise_pred_uncond_false = noise_pred_uncond[false_idx] if len(false_idx) > 0 else \
                torch.empty((0, noise_pred_uncond.size(1)), dtype=noise_pred_uncond.dtype, device=noise_pred_uncond.device)

            if len(noise_pred_text_true) > 0:
                if i <= self.apg_start_step_ocr:
                    noise_pred_true = noise_pred_uncond_true + guidance_scale * (
                            noise_pred_text_true - noise_pred_uncond_true
                    )
                    _ = self.cfg_guider_ocr(noise_pred_text_true, noise_pred_uncond_true, step=i)
                else:
                    noise_pred_true = self.cfg_guider_ocr(noise_pred_text_true, noise_pred_uncond_true, step=i)
            else:
                noise_pred_true = noise_pred_text_true

            if len(noise_pred_text_false) > 0:
                if i <= self.apg_start_step_general:
                    noise_pred_false = noise_pred_uncond_false + guidance_scale * (
                            noise_pred_text_false - noise_pred_uncond_false
                    )
                    _ = self.cfg_guider_general(noise_pred_text_false, noise_pred_uncond_false, step=i)
                else:
                    noise_pred_false = self.cfg_guider_general(noise_pred_text_false, noise_pred_uncond_false, step=i)
            else:
                noise_pred_false = noise_pred_text_false

            noise_pred = torch.empty_like(noise_pred_text)
            if len(true_idx) > 0:
                noise_pred[true_idx] = noise_pred_true
            if len(false_idx) > 0:
                noise_pred[false_idx] = noise_pred_false

        else:
            noise_pred = noise_pred_uncond + guidance_scale * (
                    noise_pred_text - noise_pred_uncond
            )

            if self.do_classifier_free_guidance and self.guidance_rescale > 0.0:
                # Based on 3.4. in https://arxiv.org/pdf/2305.08891.pdf
                noise_pred = rescale_noise_cfg(
                    noise_pred,
                    noise_pred_text,
                    guidance_rescale=self.guidance_rescale,
                )

        return noise_pred

    def _decode_latents(self, latents, reorg_tokens=False):
        """
        Decode latents to images using VAE.

        Args:
            latents: Latent tensor

        Returns:
            Image tensor
        """
        if hasattr(self.vae.config, "shift_factor") and self.vae.config.shift_factor:
            latents = latents / self.vae.config.scaling_factor + self.vae.config.shift_factor
        else:
            latents = latents / self.vae.config.scaling_factor

        if reorg_tokens:
            latents = rearrange(latents, "b c f h w -> b f c h w")
            latents = rearrange(latents, "b f (n c) h w -> b (f n) c h w", n=2)
            latents = rearrange(latents, "b f c h w -> b c f h w")
            latents = latents[:, :, 1:]

        if latents.ndim == 5:
            latents = latents.squeeze(2)
        if latents.ndim == 4:
            latents = latents.unsqueeze(2)

        with torch.autocast(device_type="cuda", dtype=torch.float16, enabled=True):
            image = self.vae.decode(latents, return_dict=False)[0]
            
        # Post-process image - remove frame dimension and normalize
        image = (image / 2 + 0.5).clamp(0, 1)
        image = image[:, :, 0]  # Remove frame dimension for images
        image = image.cpu().float()
        
        return image

    def get_timesteps_sigmas(self, sampling_steps: int, shift):
        sigmas = torch.linspace(1, 0, sampling_steps + 1)
        sigmas = (shift * sigmas) / (1 + (shift - 1) * sigmas)
        sigmas = sigmas.to(torch.float32)
        timesteps = (sigmas[:-1] * 1000).to(dtype=torch.float32, device=self.device)
        return timesteps, sigmas

    def step(self, latents, noise_pred, sigmas, step_i):
        return latents.float() - (sigmas[step_i] - sigmas[step_i + 1]) * noise_pred.float()

    @torch.no_grad()
    def __call__(
        self,
        prompt: str,
        shift: int = 4,
        negative_prompt: str = "",
        width: int = 2048,
        height: int = 2048,
        use_reprompt: bool = False,
        use_refiner: bool = False,
        num_inference_steps: Optional[int] = None,
        guidance_scale: Optional[float] = None,
        seed: Optional[int] = 42,
        **kwargs
    ) -> Image.Image:
        """
        Generate an image from a text prompt.

        Args:
            prompt: Text prompt describing the image
            negative_prompt: Negative prompt for guidance
            width: Image width
            height: Image height
            use_reprompt: Whether to use reprompt model
            use_refiner: Whether to use refiner pipeline
            num_inference_steps: Number of denoising steps (overrides config if provided)
            guidance_scale: Strength of classifier-free guidance (overrides config if provided)
            seed: Random seed for reproducibility
            **kwargs: Additional arguments

        Returns:
            Generated PIL Image
        """
        if seed is not None:
            generator = torch.Generator(device='cpu').manual_seed(seed)
            torch.manual_seed(seed)
        else:
            generator = None

        sampling_steps = num_inference_steps if num_inference_steps is not None else self.default_sampling_steps
        guidance_scale = guidance_scale if guidance_scale is not None else self.default_guidance_scale
        shift = shift if shift is not None else self.shift

        user_prompt = prompt
        if use_reprompt:
            if self.enable_dit_offloading:
                self.to('cpu')
            prompt = self.reprompt_model.predict(prompt)
            if self.enable_dit_offloading:
                self.to(self.execution_device)

        print("=" * 60)
        print("πŸ–ΌοΈ  HunyuanImage Generation Task")
        print("-" * 60)
        print(f"Prompt:           {user_prompt}")
        if use_reprompt:
            print(f"Reprompt:         {prompt}")
        if not self.cfg_distilled:
            print(f"Negative Prompt:  {negative_prompt if negative_prompt else '(none)'}")
        print(f"Guidance Scale:   {guidance_scale}")
        print(f"CFG Mode:         {self.cfg_mode}")
        print(f"Guidance Rescale: {self.guidance_rescale}")
        print(f"Shift:            {shift}")
        print(f"Seed:             {seed}")
        print(f"Use MeanFlow:     {self.use_meanflow}")
        print(f"Use byT5:         {self.use_byt5}")
        print(f"Image Size:       {width} x {height}")
        print(f"Sampling Steps:   {sampling_steps}")
        print("=" * 60)

        pos_text_emb, pos_text_mask = self._encode_text(prompt)
        neg_text_emb, neg_text_mask = self._encode_text(negative_prompt)

        pos_byt5_emb, pos_byt5_mask = self._encode_glyph(prompt)
        neg_byt5_emb, neg_byt5_mask = self._encode_glyph(negative_prompt)

        latents = self._prepare_latents(width, height, generator=generator)

        do_classifier_free_guidance = (not self.cfg_distilled) and guidance_scale > 1
        if do_classifier_free_guidance:
            text_emb = torch.cat([neg_text_emb, pos_text_emb])
            text_mask = torch.cat([neg_text_mask, pos_text_mask])

            if self.use_byt5 and pos_byt5_emb is not None and neg_byt5_emb is not None:
                byt5_emb = torch.cat([neg_byt5_emb, pos_byt5_emb])
                byt5_mask = torch.cat([neg_byt5_mask, pos_byt5_mask])
            else:
                byt5_emb = pos_byt5_emb
                byt5_mask = pos_byt5_mask
        else:
            text_emb = pos_text_emb
            text_mask = pos_text_mask
            byt5_emb = pos_byt5_emb
            byt5_mask = pos_byt5_mask

        timesteps, sigmas = self.get_timesteps_sigmas(sampling_steps, shift)

        for i, t in enumerate(tqdm(timesteps, desc="Denoising", total=len(timesteps))):
            latent_model_input = torch.cat([latents] * 2) if do_classifier_free_guidance else latents
            t_expand = t.repeat(latent_model_input.shape[0])
            if self.use_meanflow:
                if i == len(timesteps) - 1:
                    timesteps_r = torch.tensor([0.0], device=self.device)
                else:
                    timesteps_r = timesteps[i + 1]
                timesteps_r = timesteps_r.repeat(latent_model_input.shape[0])
            else:
                timesteps_r = None

            if self.cfg_distilled:
                noise_pred = self._denoise_step(
                    latent_model_input, t_expand, text_emb, text_mask, byt5_emb, byt5_mask, guidance_scale, timesteps_r=timesteps_r,
                )
            else:
                noise_pred = self._denoise_step(
                    latent_model_input, t_expand, text_emb, text_mask, byt5_emb, byt5_mask, timesteps_r=timesteps_r,
                )

            if do_classifier_free_guidance:
                noise_pred = self._apply_classifier_free_guidance(noise_pred, guidance_scale, i)

            latents = self.step(latents, noise_pred, sigmas, i)


        image = self._decode_latents(latents)
        image = (image.squeeze(0).permute(1, 2, 0) * 255).byte().numpy()
        pil_image = Image.fromarray(image)

        if use_refiner:
            if self.enable_dit_offloading:
                self.to('cpu')
            if self.enable_refiner_offloading:
                self.refiner_pipeline.to(self.execution_device)
            pil_image = self.refiner_pipeline(
                image=pil_image,
                prompt=prompt,
                negative_prompt=negative_prompt,
                width=width,
                height=height,
                use_reprompt=False,
                use_refiner=False,
                num_inference_steps=4,
                guidance_scale=guidance_scale,
                generator=generator,
            )
            if self.enable_refiner_offloading:
                self.refiner_pipeline.to('cpu')
            if self.enable_dit_offloading:
                self.to(self.execution_device)

        return pil_image

    @property
    def use_meanflow(self):
        return getattr(self.dit, 'use_meanflow', False)

    @property
    def use_byt5(self):
        return getattr(self.dit, 'glyph_byT5_v2', False)

    @property
    def cfg_distilled(self):
        return getattr(self.dit, 'guidance_embed', False)

    def to(self, device: str | torch.device):
        """
        Move pipeline to specified device.

        Args:
            device: Target device string

        Returns:
            Self
        """
        self.device = device
        if self.dit is not None:
            self.dit = self.dit.to(device, non_blocking=True)
        # if self.text_encoder is not None:
            # self.text_encoder = self.text_encoder.to(device, non_blocking=True)
        if self.vae is not None:
            self.vae = self.vae.to(device, non_blocking=True)
        return self

    def update_config(self, **kwargs):
        """
        Update configuration parameters.

        Args:
            **kwargs: Key-value pairs to update

        Returns:
            Self
        """
        for key, value in kwargs.items():
            if hasattr(self.config, key):
                setattr(self.config, key, value)
                if hasattr(self, key):
                    setattr(self, key, value)
        return self

    @classmethod
    def from_pretrained(cls, model_name: str = "hunyuanimage-v2.1", use_distilled: bool = False, **kwargs):
        """
        Create pipeline from pretrained model.

        Args:
            model_name: Model name, supports "hunyuanimage-v2.1", "hunyuanimage-v2.1-distilled"
            use_distilled: Whether to use distilled model (overrides model_name if specified)
            **kwargs: Additional configuration options

        Returns:
            HunyuanImagePipeline instance
        """
        if model_name == "hunyuanimage-v2.1":
            version = "v2.1"
            use_distilled = False
        elif model_name == "hunyuanimage-v2.1-distilled":
            version = "v2.1"
            use_distilled = True
        else:
            raise ValueError(
                f"Unsupported model name: {model_name}. Supported names: 'hunyuanimage-v2.1', 'hunyuanimage-v2.1-distilled'"
            )

        config = HunyuanImagePipelineConfig.create_default(
            version=version, use_distilled=use_distilled, **kwargs
        )
        return cls(config=config)

    @classmethod
    def from_config(cls, config: HunyuanImagePipelineConfig):
        """
        Create pipeline from configuration object.

        Args:
            config: HunyuanImagePipelineConfig instance

        Returns:
            HunyuanImagePipeline instance
        """
        return cls(config=config)


def DiffusionPipeline(model_name: str = "hunyuanimage-v2.1", use_distilled: bool = False, **kwargs):
    """
    Factory function to create HunyuanImagePipeline.

    Args:
        model_name: Model name, supports "hunyuanimage-v2.1", "hunyuanimage-v2.1-distilled"
        use_distilled: Whether to use distilled model (overrides model_name if specified)
        **kwargs: Additional configuration options

    Returns:
        HunyuanImagePipeline instance
    """
    return HunyuanImagePipeline.from_pretrained(model_name, use_distilled=use_distilled, **kwargs)