Spaces:
Running
on
A100
Running
on
A100
File size: 19,810 Bytes
43c5292 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 |
import os
from typing import Dict, List, Optional, Union
import torch
import torch.nn as nn
from diffusers.configuration_utils import ConfigMixin, register_to_config
from diffusers.models import ModelMixin
from hyimage.models.hunyuan.modules.posemb_layers import get_nd_rotary_pos_embed
from hyimage.models.hunyuan.modules.flash_attn_no_pad import get_cu_seqlens
from .activation_layers import get_activation_layer
from .embed_layers import PatchEmbed, PatchEmbed2D, TextProjection, TimestepEmbedder
from .mlp_layers import FinalLayer
from .models import MMDoubleStreamBlock, MMSingleStreamBlock
from .token_refiner import SingleTokenRefiner
from hyimage.models.text_encoder.byT5 import ByT5Mapper
def convert_hunyuan_dict_for_tensor_parallel(state_dict):
"""
Convert a Hunyuan model state dict to be compatible with tensor parallel architectures.
Args:
state_dict: Original state dict
Returns:
new_dict: Converted state dict
"""
new_dict = {}
for k, w in state_dict.items():
if k.startswith("double_blocks") and "attn_qkv.weight" in k:
hidden_size = w.shape[1]
k1 = k.replace("attn_qkv.weight", "attn_q.weight")
w1 = w[:hidden_size, :]
new_dict[k1] = w1
k2 = k.replace("attn_qkv.weight", "attn_k.weight")
w2 = w[hidden_size : 2 * hidden_size, :]
new_dict[k2] = w2
k3 = k.replace("attn_qkv.weight", "attn_v.weight")
w3 = w[-hidden_size:, :]
new_dict[k3] = w3
elif k.startswith("double_blocks") and "attn_qkv.bias" in k:
hidden_size = w.shape[0] // 3
k1 = k.replace("attn_qkv.bias", "attn_q.bias")
w1 = w[:hidden_size]
new_dict[k1] = w1
k2 = k.replace("attn_qkv.bias", "attn_k.bias")
w2 = w[hidden_size : 2 * hidden_size]
new_dict[k2] = w2
k3 = k.replace("attn_qkv.bias", "attn_v.bias")
w3 = w[-hidden_size:]
new_dict[k3] = w3
elif k.startswith("single_blocks") and "linear1" in k:
hidden_size = state_dict[k.replace("linear1", "linear2")].shape[0]
k1 = k.replace("linear1", "linear1_q")
w1 = w[:hidden_size]
new_dict[k1] = w1
k2 = k.replace("linear1", "linear1_k")
w2 = w[hidden_size : 2 * hidden_size]
new_dict[k2] = w2
k3 = k.replace("linear1", "linear1_v")
w3 = w[2 * hidden_size : 3 * hidden_size]
new_dict[k3] = w3
k4 = k.replace("linear1", "linear1_mlp")
w4 = w[3 * hidden_size :]
new_dict[k4] = w4
elif k.startswith("single_blocks") and "linear2" in k:
k1 = k.replace("linear2", "linear2.fc")
new_dict[k1] = w
else:
new_dict[k] = w
return new_dict
def load_hunyuan_dit_state_dict(model, dit_model_name_or_path, strict=True, assign=False):
"""
Load a state dict for a Hunyuan model, handling both safetensors and torch formats.
Args:
model: Model instance to load weights into
dit_model_name_or_path: Path to the checkpoint file
strict: Whether to strictly enforce that the keys in state_dict match the model's keys
assign: If True, assign weights directly without copying
Returns:
model: The model with loaded weights
"""
from safetensors.torch import load_file as safetensors_load_file
if not os.path.exists(dit_model_name_or_path):
raise FileNotFoundError(f"Checkpoint file not found: {dit_model_name_or_path}")
if dit_model_name_or_path.endswith(".safetensors"):
state_dict = safetensors_load_file(dit_model_name_or_path)
else:
state_dict = torch.load(
dit_model_name_or_path,
map_location="cpu",
weights_only=True,
)
try:
state_dict = convert_hunyuan_dict_for_tensor_parallel(state_dict)
except Exception:
pass
model.load_state_dict(state_dict, strict=strict, assign=assign)
return model
class HYImageDiffusionTransformer(ModelMixin, ConfigMixin):
@register_to_config
def __init__(
self,
patch_size: list = [1, 2, 2],
in_channels: int = 4,
out_channels: int = None,
hidden_size: int = 3072,
heads_num: int = 24,
mlp_width_ratio: float = 4.0,
mlp_act_type: str = "gelu_tanh",
mm_double_blocks_depth: int = 20,
mm_single_blocks_depth: int = 40,
rope_dim_list: List[int] = [16, 56, 56],
qkv_bias: bool = True,
qk_norm: bool = True,
qk_norm_type: str = "rms",
guidance_embed: bool = False,
text_projection: str = "single_refiner",
use_attention_mask: bool = True,
dtype: Optional[torch.dtype] = None,
device: Optional[torch.device] = None,
text_states_dim: int = 4096,
rope_theta: int = 256,
glyph_byT5_v2: bool = False,
use_meanflow: bool = False,
):
factory_kwargs = {"device": device, "dtype": dtype}
super().__init__()
self.patch_size = patch_size
self.in_channels = in_channels
self.out_channels = in_channels if out_channels is None else out_channels
self.unpatchify_channels = self.out_channels
self.guidance_embed = guidance_embed
self.rope_dim_list = rope_dim_list
self.rope_theta = rope_theta
self.use_attention_mask = use_attention_mask
self.text_projection = text_projection
if hidden_size % heads_num != 0:
raise ValueError(f"Hidden size {hidden_size} must be divisible by heads_num {heads_num}")
pe_dim = hidden_size // heads_num
if sum(rope_dim_list) != pe_dim:
raise ValueError(f"Got {rope_dim_list} but expected positional dim {pe_dim}")
self.hidden_size = hidden_size
self.heads_num = heads_num
self.glyph_byT5_v2 = glyph_byT5_v2
if self.glyph_byT5_v2:
self.byt5_in = ByT5Mapper(
in_dim=1472,
out_dim=2048,
hidden_dim=2048,
out_dim1=hidden_size,
use_residual=False
)
# Image projection
if len(self.patch_size) == 3:
self.img_in = PatchEmbed(self.patch_size, self.in_channels, self.hidden_size, **factory_kwargs)
elif len(self.patch_size) == 2:
self.img_in = PatchEmbed2D(self.patch_size, self.in_channels, self.hidden_size, **factory_kwargs)
else:
raise ValueError(f"Unsupported patch_size: {self.patch_size}")
# Text projection
if self.text_projection == "linear":
self.txt_in = TextProjection(
text_states_dim,
self.hidden_size,
get_activation_layer("silu"),
**factory_kwargs,
)
elif self.text_projection == "single_refiner":
self.txt_in = SingleTokenRefiner(
text_states_dim,
hidden_size,
heads_num,
depth=2,
**factory_kwargs,
)
else:
raise NotImplementedError(f"Unsupported text_projection: {self.text_projection}")
# Time modulation
self.time_in = TimestepEmbedder(self.hidden_size, get_activation_layer("silu"), **factory_kwargs)
# MeanFlow support: only create time_r_in when needed
self.time_r_in = (
TimestepEmbedder(self.hidden_size, get_activation_layer("silu"), **factory_kwargs)
if use_meanflow
else None
)
self.use_meanflow = use_meanflow
# Guidance modulation
self.guidance_in = (
TimestepEmbedder(self.hidden_size, get_activation_layer("silu"), **factory_kwargs)
if guidance_embed
else None
)
# Double blocks
self.double_blocks = nn.ModuleList(
[
MMDoubleStreamBlock(
self.hidden_size,
self.heads_num,
mlp_width_ratio=mlp_width_ratio,
mlp_act_type=mlp_act_type,
qk_norm=qk_norm,
qk_norm_type=qk_norm_type,
qkv_bias=qkv_bias,
**factory_kwargs,
)
for _ in range(mm_double_blocks_depth)
]
)
# Single blocks
self.single_blocks = nn.ModuleList(
[
MMSingleStreamBlock(
self.hidden_size,
self.heads_num,
mlp_width_ratio=mlp_width_ratio,
mlp_act_type=mlp_act_type,
qk_norm=qk_norm,
qk_norm_type=qk_norm_type,
**factory_kwargs,
)
for _ in range(mm_single_blocks_depth)
]
)
self.final_layer = FinalLayer(
self.hidden_size,
self.patch_size,
self.out_channels,
get_activation_layer("silu"),
**factory_kwargs,
)
def enable_deterministic(self):
"""Enable deterministic mode for all transformer blocks."""
for block in self.double_blocks:
block.enable_deterministic()
for block in self.single_blocks:
block.enable_deterministic()
def disable_deterministic(self):
"""Disable deterministic mode for all transformer blocks."""
for block in self.double_blocks:
block.disable_deterministic()
for block in self.single_blocks:
block.disable_deterministic()
def get_rotary_pos_embed(self, rope_sizes):
"""
Get rotary position embeddings for the given sizes.
Args:
rope_sizes: Sizes for each rotary dimension.
Returns:
freqs_cos, freqs_sin: Cosine and sine frequencies for rotary embedding.
"""
target_ndim = 3
head_dim = self.hidden_size // self.heads_num
rope_dim_list = self.rope_dim_list
if rope_dim_list is None:
rope_dim_list = [head_dim // target_ndim for _ in range(target_ndim)]
assert sum(rope_dim_list) == head_dim, "sum(rope_dim_list) should equal to head_dim of attention layer"
freqs_cos, freqs_sin = get_nd_rotary_pos_embed(
rope_dim_list,
rope_sizes,
theta=self.rope_theta,
use_real=True,
theta_rescale_factor=1,
)
return freqs_cos, freqs_sin
def reorder_txt_token(self, byt5_txt, txt, byt5_text_mask, text_mask):
"""
Reorder text tokens for ByT5 integration.
Args:
byt5_txt: ByT5 text embeddings.
txt: Text embeddings.
byt5_text_mask: Mask for ByT5 tokens.
text_mask: Mask for text tokens.
Returns:
reorder_txt: Reordered text embeddings.
reorder_mask: Reordered mask.
"""
reorder_txt = []
reorder_mask = []
for i in range(text_mask.shape[0]):
byt5_text_mask_i = byt5_text_mask[i].bool()
text_mask_i = text_mask[i].bool()
byt5_txt_i = byt5_txt[i]
txt_i = txt[i]
reorder_txt_i = torch.cat([
byt5_txt_i[byt5_text_mask_i],
txt_i[text_mask_i],
byt5_txt_i[~byt5_text_mask_i],
txt_i[~text_mask_i]
], dim=0)
reorder_mask_i = torch.cat([
byt5_text_mask_i[byt5_text_mask_i],
text_mask_i[text_mask_i],
byt5_text_mask_i[~byt5_text_mask_i],
text_mask_i[~text_mask_i]
], dim=0)
reorder_txt.append(reorder_txt_i)
reorder_mask.append(reorder_mask_i)
reorder_txt = torch.stack(reorder_txt)
reorder_mask = torch.stack(reorder_mask).to(dtype=torch.int64)
return reorder_txt, reorder_mask
def forward(
self,
hidden_states: torch.Tensor,
timestep: torch.LongTensor,
text_states: torch.Tensor,
encoder_attention_mask: torch.Tensor,
output_features: bool = False,
output_features_stride: int = 8,
freqs_cos: Optional[torch.Tensor] = None,
freqs_sin: Optional[torch.Tensor] = None,
return_dict: bool = False,
guidance=None,
extra_kwargs=None,
*,
timesteps_r: Optional[torch.LongTensor] = None,
) -> Union[torch.Tensor, Dict[str, torch.Tensor]]:
"""
Forward pass for the transformer.
Parameters
----------
hidden_states : torch.Tensor
Input image tensor.
timestep : torch.LongTensor
Timestep tensor.
text_states : torch.Tensor
Text embeddings.
encoder_attention_mask : torch.Tensor
Attention mask for text.
output_features : bool, optional
Whether to output intermediate features.
output_features_stride : int, optional
Stride for outputting features.
freqs_cos, freqs_sin : torch.Tensor, optional
Precomputed rotary embeddings.
return_dict : bool, optional
Not supported.
guidance : torch.Tensor, optional
Guidance vector for distillation.
extra_kwargs : dict, optional
Extra arguments for ByT5.
timesteps_r : torch.LongTensor, optional
Additional timestep for MeanFlow.
Returns
-------
tuple
(img, features_list, shape)
"""
if guidance is None:
guidance = torch.tensor([6016.0], device=hidden_states.device, dtype=torch.bfloat16)
img = x = hidden_states
text_mask = encoder_attention_mask
t = timestep
txt = text_states
input_shape = x.shape
# Calculate spatial dimensions and get rotary embeddings
if len(input_shape) == 5:
_, _, ot, oh, ow = x.shape
tt, th, tw = (
ot // self.patch_size[0],
oh // self.patch_size[1],
ow // self.patch_size[2],
)
if freqs_cos is None or freqs_sin is None:
freqs_cos, freqs_sin = self.get_rotary_pos_embed((tt, th, tw))
elif len(input_shape) == 4:
_, _, oh, ow = x.shape
th, tw = (
oh // self.patch_size[0],
ow // self.patch_size[1],
)
if freqs_cos is None or freqs_sin is None:
assert freqs_cos is None and freqs_sin is None, "freqs_cos and freqs_sin must be both None or both not None"
freqs_cos, freqs_sin = self.get_rotary_pos_embed((th, tw))
else:
raise ValueError(f"Unsupported hidden_states shape: {x.shape}")
img = self.img_in(img)
# Prepare modulation vectors
vec = self.time_in(t)
# MeanFlow support: merge timestep and timestep_r if available
if self.use_meanflow:
assert self.time_r_in is not None, "use_meanflow is True but time_r_in is None"
if timesteps_r is not None:
assert self.time_r_in is not None, "timesteps_r is not None but time_r_in is None"
vec_r = self.time_r_in(timesteps_r)
vec = (vec + vec_r) / 2
# Guidance modulation
if self.guidance_embed:
if guidance is None:
raise ValueError("Didn't get guidance strength for guidance distilled model.")
vec = vec + self.guidance_in(guidance)
# Embed image and text
if self.text_projection == "linear":
txt = self.txt_in(txt)
elif self.text_projection == "single_refiner":
txt = self.txt_in(txt, t, text_mask if self.use_attention_mask else None)
else:
raise NotImplementedError(f"Unsupported text_projection: {self.text_projection}")
if self.glyph_byT5_v2:
byt5_text_states = extra_kwargs["byt5_text_states"]
byt5_text_mask = extra_kwargs["byt5_text_mask"]
byt5_txt = self.byt5_in(byt5_text_states)
txt, text_mask = self.reorder_txt_token(byt5_txt, txt, byt5_text_mask, text_mask)
txt_seq_len = txt.shape[1]
img_seq_len = img.shape[1]
# Calculate cu_seqlens and max_s for flash attention
cu_seqlens, max_s = get_cu_seqlens(text_mask, img_seq_len)
freqs_cis = (freqs_cos, freqs_sin) if freqs_cos is not None else None
# Pass through double stream blocks
for block in self.double_blocks:
double_block_args = [img, txt, vec, freqs_cis, text_mask, cu_seqlens, max_s]
img, txt = block(*double_block_args)
# Merge txt and img to pass through single stream blocks
x = torch.cat((img, txt), 1)
features_list = [] if output_features else None
if len(self.single_blocks) > 0:
for index, block in enumerate(self.single_blocks):
single_block_args = [
x,
vec,
txt_seq_len,
(freqs_cos, freqs_sin),
text_mask,
cu_seqlens,
max_s,
]
x = block(*single_block_args)
if output_features and index % output_features_stride == 0:
features_list.append(x[:, :img_seq_len, ...])
img = x[:, :img_seq_len, ...]
# Final layer
img = self.final_layer(img, vec)
# Unpatchify based on input shape
if len(input_shape) == 5:
img = self.unpatchify(img, tt, th, tw)
shape = (tt, th, tw)
elif len(input_shape) == 4:
img = self.unpatchify_2d(img, th, tw)
shape = (th, tw)
else:
raise ValueError(f"Unsupported input_shape: {input_shape}")
assert not return_dict, "return_dict is not supported."
if output_features:
features_list = torch.stack(features_list, dim=0)
else:
features_list = None
return (img, features_list, shape)
def unpatchify(self, x, t, h, w):
"""
Unpatchify 3D tensor.
Parameters
----------
x: torch.Tensor
Input tensor of shape (N, T, patch_size**2 * C)
t, h, w: int
Temporal and spatial dimensions
Returns
-------
torch.Tensor
Unpatchified tensor of shape (N, C, T*pt, H*ph, W*pw)
"""
c = self.unpatchify_channels
pt, ph, pw = self.patch_size
assert t * h * w == x.shape[1]
x = x.reshape(shape=(x.shape[0], t, h, w, c, pt, ph, pw))
x = torch.einsum("nthwcopq->nctohpwq", x)
imgs = x.reshape(shape=(x.shape[0], c, t * pt, h * ph, w * pw))
return imgs
def unpatchify_2d(self, x, h, w):
"""
Unpatchify 2D tensor.
Parameters
----------
x: torch.Tensor
Input tensor of shape (N, T, patch_size**2 * C)
h, w: int
Spatial dimensions
Returns
-------
torch.Tensor
Unpatchified tensor of shape (N, C, H*ph, W*pw)
"""
c = self.unpatchify_channels
ph, pw = self.patch_size
assert h * w == x.shape[1]
x = x.reshape(shape=(x.shape[0], h, w, c, ph, pw))
x = torch.einsum('nhwcpq->nchpwq', x)
imgs = x.reshape(shape=(x.shape[0], c, h * ph, w * pw))
return imgs
|