File size: 10,397 Bytes
43c5292
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
from typing import Optional

import torch
import torch.nn as nn
from einops import rearrange

from hyimage.models.hunyuan.modules.flash_attn_no_pad import flash_attn_no_pad
from .activation_layers import get_activation_layer
from .embed_layers import TextProjection, TimestepEmbedder
from .mlp_layers import MLP
from .modulate_layers import apply_gate
from .norm_layers import get_norm_layer


@torch.compiler.disable
def attention(
    q: torch.Tensor,
    k: torch.Tensor,
    v: torch.Tensor,
    drop_rate: float = 0.0,
    attn_mask: Optional[torch.Tensor] = None,
    causal: bool = False,
) -> torch.Tensor:
    """
    Compute attention using flash_attn_no_pad.

    Args:
        q: Query tensor of shape [B, L, H, D]
        k: Key tensor of shape [B, L, H, D]
        v: Value tensor of shape [B, L, H, D]
        drop_rate: Dropout rate for attention weights.
        attn_mask: Optional attention mask of shape [B, L].
        causal: Whether to apply causal masking.

    Returns:
        Output tensor after attention of shape [B, L, H*D]
    """
    qkv = torch.stack([q, k, v], dim=2)
    if attn_mask is not None and attn_mask.dtype != torch.bool:
        attn_mask = attn_mask.bool()
    x = flash_attn_no_pad(qkv, attn_mask, causal=causal, dropout_p=drop_rate, softmax_scale=None)
    b, s, a, d = x.shape
    out = x.reshape(b, s, -1)
    return out


class IndividualTokenRefinerBlock(nn.Module):
    """
    A single block for token refinement with self-attention and MLP.

    Args:
        hidden_size: Hidden dimension size.
        heads_num: Number of attention heads.
        mlp_width_ratio: Expansion ratio for MLP hidden size.
        mlp_drop_rate: Dropout rate for MLP.
        act_type: Activation function type.
        qk_norm: Whether to use QK normalization.
        qk_norm_type: Type of QK normalization.
        qkv_bias: Whether to use bias in QKV projections.
        dtype: Optional torch dtype.
        device: Optional torch device.
    """

    def __init__(
        self,
        hidden_size: int,
        heads_num: int,
        mlp_width_ratio: float = 4.0,
        mlp_drop_rate: float = 0.0,
        act_type: str = "silu",
        qk_norm: bool = False,
        qk_norm_type: str = "layer",
        qkv_bias: bool = True,
        dtype: Optional[torch.dtype] = None,
        device: Optional[torch.device] = None,
    ):
        factory_kwargs = {"device": device, "dtype": dtype}
        super().__init__()
        self.heads_num = heads_num
        head_dim = hidden_size // heads_num
        mlp_hidden_dim = int(hidden_size * mlp_width_ratio)

        self.norm1 = nn.LayerNorm(hidden_size, elementwise_affine=True, eps=1e-6, **factory_kwargs)
        self.self_attn_qkv = nn.Linear(hidden_size, hidden_size * 3, bias=qkv_bias, **factory_kwargs)
        qk_norm_layer = get_norm_layer(qk_norm_type)
        self.self_attn_q_norm = (
            qk_norm_layer(head_dim, elementwise_affine=True, eps=1e-6, **factory_kwargs) if qk_norm else nn.Identity()
        )
        self.self_attn_k_norm = (
            qk_norm_layer(head_dim, elementwise_affine=True, eps=1e-6, **factory_kwargs) if qk_norm else nn.Identity()
        )
        self.self_attn_proj = nn.Linear(hidden_size, hidden_size, bias=qkv_bias, **factory_kwargs)

        self.norm2 = nn.LayerNorm(hidden_size, elementwise_affine=True, eps=1e-6, **factory_kwargs)
        act_layer = get_activation_layer(act_type)
        self.mlp = MLP(
            in_channels=hidden_size,
            hidden_channels=mlp_hidden_dim,
            act_layer=act_layer,
            drop=mlp_drop_rate,
            **factory_kwargs,
        )

        self.adaLN_modulation = nn.Sequential(
            act_layer(),
            nn.Linear(hidden_size, 2 * hidden_size, bias=True, **factory_kwargs),
        )
        # Zero-initialize the modulation
        nn.init.zeros_(self.adaLN_modulation[1].weight)
        nn.init.zeros_(self.adaLN_modulation[1].bias)

    def forward(
        self,
        x: torch.Tensor,
        c: torch.Tensor,  # timestep_aware_representations + context_aware_representations
        attn_mask: Optional[torch.Tensor] = None,
    ) -> torch.Tensor:
        """
        Forward pass for IndividualTokenRefinerBlock.

        Args:
            x: Input tensor of shape [B, L, C].
            c: Conditioning tensor of shape [B, C].
            attn_mask: Optional attention mask of shape [B, L].

        Returns:
            Refined tensor of shape [B, L, C].
        """
        gate_msa, gate_mlp = self.adaLN_modulation(c).chunk(2, dim=1)
        norm_x = self.norm1(x)
        qkv = self.self_attn_qkv(norm_x)
        q, k, v = rearrange(qkv, "B L (K H D) -> K B L H D", K=3, H=self.heads_num)
        q = self.self_attn_q_norm(q).to(v)
        k = self.self_attn_k_norm(k).to(v)
        attn = attention(q, k, v, attn_mask=attn_mask)
        x = x + apply_gate(self.self_attn_proj(attn), gate_msa)
        x = x + apply_gate(self.mlp(self.norm2(x)), gate_mlp)
        return x


class IndividualTokenRefiner(nn.Module):
    """
    Stacks multiple IndividualTokenRefinerBlock modules.

    Args:
        hidden_size: Hidden dimension size.
        heads_num: Number of attention heads.
        depth: Number of blocks.
        mlp_width_ratio: Expansion ratio for MLP hidden size.
        mlp_drop_rate: Dropout rate for MLP.
        act_type: Activation function type.
        qk_norm: Whether to use QK normalization.
        qk_norm_type: Type of QK normalization.
        qkv_bias: Whether to use bias in QKV projections.
        dtype: Optional torch dtype.
        device: Optional torch device.
    """

    def __init__(
        self,
        hidden_size: int,
        heads_num: int,
        depth: int,
        mlp_width_ratio: float = 4.0,
        mlp_drop_rate: float = 0.0,
        act_type: str = "silu",
        qk_norm: bool = False,
        qk_norm_type: str = "layer",
        qkv_bias: bool = True,
        dtype: Optional[torch.dtype] = None,
        device: Optional[torch.device] = None,
    ):
        factory_kwargs = {"device": device, "dtype": dtype}
        super().__init__()
        self.blocks = nn.ModuleList(
            [
                IndividualTokenRefinerBlock(
                    hidden_size=hidden_size,
                    heads_num=heads_num,
                    mlp_width_ratio=mlp_width_ratio,
                    mlp_drop_rate=mlp_drop_rate,
                    act_type=act_type,
                    qk_norm=qk_norm,
                    qk_norm_type=qk_norm_type,
                    qkv_bias=qkv_bias,
                    **factory_kwargs,
                )
                for _ in range(depth)
            ]
        )

    def forward(
        self,
        x: torch.Tensor,
        c: torch.LongTensor,
        mask: Optional[torch.Tensor] = None,
    ) -> torch.Tensor:
        """
        Forward pass for IndividualTokenRefiner.

        Args:
            x: Input tensor of shape [B, L, C].
            c: Conditioning tensor of shape [B, C].
            mask: Optional mask tensor of shape [B, L].

        Returns:
            Refined tensor of shape [B, L, C].
        """
        if mask is not None:
            mask = mask.clone().bool()
            mask[:, 0] = True  # Prevent attention weights from becoming NaN
        for block in self.blocks:
            x = block(x, c, mask)
        return x


class SingleTokenRefiner(nn.Module):
    """
    Single token refiner block for LLM text embedding refinement.

    Args:
        in_channels: Input feature dimension.
        hidden_size: Hidden dimension size.
        heads_num: Number of attention heads.
        depth: Number of blocks.
        mlp_width_ratio: Expansion ratio for MLP hidden size.
        mlp_drop_rate: Dropout rate for MLP.
        act_type: Activation function type.
        qk_norm: Whether to use QK normalization.
        qk_norm_type: Type of QK normalization.
        qkv_bias: Whether to use bias in QKV projections.
        dtype: Optional torch dtype.
        device: Optional torch device.
    """

    def __init__(
        self,
        in_channels: int,
        hidden_size: int,
        heads_num: int,
        depth: int,
        mlp_width_ratio: float = 4.0,
        mlp_drop_rate: float = 0.0,
        act_type: str = "silu",
        qk_norm: bool = False,
        qk_norm_type: str = "layer",
        qkv_bias: bool = True,
        dtype: Optional[torch.dtype] = None,
        device: Optional[torch.device] = None,
    ):
        factory_kwargs = {"device": device, "dtype": dtype}
        super().__init__()
        self.input_embedder = nn.Linear(in_channels, hidden_size, bias=True, **factory_kwargs)
        act_layer = get_activation_layer(act_type)
        self.t_embedder = TimestepEmbedder(hidden_size, act_layer, **factory_kwargs)
        self.c_embedder = TextProjection(in_channels, hidden_size, act_layer, **factory_kwargs)
        self.individual_token_refiner = IndividualTokenRefiner(
            hidden_size=hidden_size,
            heads_num=heads_num,
            depth=depth,
            mlp_width_ratio=mlp_width_ratio,
            mlp_drop_rate=mlp_drop_rate,
            act_type=act_type,
            qk_norm=qk_norm,
            qk_norm_type=qk_norm_type,
            qkv_bias=qkv_bias,
            **factory_kwargs,
        )

    def forward(
        self,
        x: torch.Tensor,
        t: torch.LongTensor,
        mask: Optional[torch.LongTensor] = None,
    ) -> torch.Tensor:
        """
        Forward pass for SingleTokenRefiner.

        Args:
            x: Input tensor of shape [B, L, in_channels].
            t: Timestep tensor of shape [B].
            mask: Optional mask tensor of shape [B, L].

        Returns:
            Refined tensor of shape [B, L, hidden_size].
        """
        timestep_aware_representations = self.t_embedder(t)
        if mask is None:
            context_aware_representations = x.mean(dim=1)
        else:
            mask_float = mask.unsqueeze(-1)  # [B, L, 1]
            context_aware_representations = (x * mask_float).sum(dim=1) / mask_float.sum(dim=1)
        context_aware_representations = self.c_embedder(context_aware_representations)
        c = timestep_aware_representations + context_aware_representations
        x = self.input_embedder(x)
        x = self.individual_token_refiner(x, c, mask)
        return x