Spaces:
Running
on
A100
Running
on
A100
File size: 7,202 Bytes
43c5292 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 |
import json
import torch
import torch.nn as nn
from transformers import AutoTokenizer, T5ForConditionalGeneration
def load_glyph_byT5_v2(args, device):
"""
Loads ByT5 tokenizer and encoder model for glyph encoding.
Args:
args (dict): Configuration dictionary containing paths and settings.
device (str or torch.device): Device to load the model onto.
Returns:
dict: Dictionary with keys 'byt5_tokenizer', 'byt5_model', 'byt5_max_length'.
"""
byt5_tokenizer, byt5_model, byt5_max_length = create_byt5(args, device)
byt5_model = byt5_model.to(device=device)
return {
"byt5_tokenizer": byt5_tokenizer,
"byt5_model": byt5_model,
"byt5_max_length": byt5_max_length,
}
def create_byt5(args, device):
"""
Create ByT5 tokenizer and encoder, load weights if provided.
Args:
args (dict): Configuration dictionary.
device (str or torch.device): Device to load the model onto.
Returns:
tuple: (byt5_tokenizer, byt5_model, byt5_max_length)
"""
byt5_max_length = args['byt5_max_length']
byt5_config = dict(
byt5_name=args['byT5_google_path'],
special_token=True,
color_special_token=True,
font_special_token=True,
color_ann_path=args['multilingual_prompt_format_color_path'],
font_ann_path=args['multilingual_prompt_format_font_path'],
multilingual=True,
)
huggingface_cache_dir = None
byt5_model, byt5_tokenizer = load_byt5_and_byt5_tokenizer(
**byt5_config,
huggingface_cache_dir=huggingface_cache_dir,
device=device,
)
# Load custom checkpoint if provided
if args['byT5_ckpt_path'] is not None:
if "cuda" not in str(device):
byt5_state_dict = torch.load(args['byT5_ckpt_path'], map_location=f"cuda:{device}")
else:
byt5_state_dict = torch.load(args['byT5_ckpt_path'], map_location=device)
if 'state_dict' in byt5_state_dict:
sd = byt5_state_dict["state_dict"]
newsd = {}
for k, v in sd.items():
if k.startswith('module.text_tower.encoder.'):
newsd[k[len('module.text_tower.encoder.'):]] = v
byt5_state_dict = newsd
byt5_model.load_state_dict(byt5_state_dict)
byt5_model.requires_grad_(False)
return byt5_tokenizer, byt5_model, byt5_max_length
def add_special_token(
tokenizer,
text_encoder,
add_color,
add_font,
color_ann_path,
font_ann_path,
multilingual=False,
):
"""
Add special tokens for color and font to tokenizer and text encoder.
Args:
tokenizer: Huggingface tokenizer.
text_encoder: Huggingface T5 encoder.
add_color (bool): Whether to add color tokens.
add_font (bool): Whether to add font tokens.
color_ann_path (str): Path to color annotation JSON.
font_ann_path (str): Path to font annotation JSON.
multilingual (bool): Whether to use multilingual font tokens.
"""
with open(font_ann_path, 'r') as f:
idx_font_dict = json.load(f)
with open(color_ann_path, 'r') as f:
idx_color_dict = json.load(f)
if multilingual:
font_token = [f'<{font_code[:2]}-font-{idx_font_dict[font_code]}>' for font_code in idx_font_dict]
else:
font_token = [f'<font-{i}>' for i in range(len(idx_font_dict))]
color_token = [f'<color-{i}>' for i in range(len(idx_color_dict))]
additional_special_tokens = []
if add_color:
additional_special_tokens += color_token
if add_font:
additional_special_tokens += font_token
tokenizer.add_tokens(additional_special_tokens, special_tokens=True)
# Set mean_resizing=False to avoid PyTorch LAPACK dependency
text_encoder.resize_token_embeddings(len(tokenizer), mean_resizing=False)
def load_byt5_and_byt5_tokenizer(
byt5_name='google/byt5-small',
special_token=False,
color_special_token=False,
font_special_token=False,
color_ann_path='assets/color_idx.json',
font_ann_path='assets/font_idx_512.json',
huggingface_cache_dir=None,
multilingual=False,
device=None,
):
"""
Load ByT5 encoder and tokenizer from Huggingface, and add special tokens if needed.
Args:
byt5_name (str): Model name or path.
special_token (bool): Whether to add special tokens.
color_special_token (bool): Whether to add color tokens.
font_special_token (bool): Whether to add font tokens.
color_ann_path (str): Path to color annotation JSON.
font_ann_path (str): Path to font annotation JSON.
huggingface_cache_dir (str): Huggingface cache directory.
multilingual (bool): Whether to use multilingual font tokens.
device (str or torch.device): Device to load the model onto.
Returns:
tuple: (byt5_text_encoder, byt5_tokenizer)
"""
byt5_tokenizer = AutoTokenizer.from_pretrained(
byt5_name,
cache_dir=huggingface_cache_dir,
)
byt5_text_encoder = T5ForConditionalGeneration.from_pretrained(
byt5_name,
cache_dir=huggingface_cache_dir,
).get_encoder()
if "cuda" not in str(device):
device = torch.device(f"cuda:{device}")
else:
device = torch.device(device)
byt5_text_encoder = byt5_text_encoder.to(device)
if special_token:
add_special_token(
byt5_tokenizer,
byt5_text_encoder,
add_color=color_special_token,
add_font=font_special_token,
color_ann_path=color_ann_path,
font_ann_path=font_ann_path,
multilingual=multilingual,
)
return byt5_text_encoder, byt5_tokenizer
class ByT5Mapper(nn.Module):
"""
ByT5Mapper: Maps ByT5 encoder outputs to a new space, with optional residual connection.
Args:
in_dim (int): Input dimension (must equal out_dim if use_residual).
out_dim (int): Output dimension after second linear layer.
hidden_dim (int): Hidden dimension for intermediate layer.
out_dim1 (int): Final output dimension.
use_residual (bool): Whether to use residual connection (default: True).
"""
def __init__(self, in_dim, out_dim, hidden_dim, out_dim1, use_residual=True):
super().__init__()
if use_residual:
assert in_dim == out_dim
self.layernorm = nn.LayerNorm(in_dim)
self.fc1 = nn.Linear(in_dim, hidden_dim)
self.fc2 = nn.Linear(hidden_dim, out_dim)
self.fc3 = nn.Linear(out_dim, out_dim1)
self.use_residual = use_residual
self.act_fn = nn.GELU()
def forward(self, x):
"""
Forward pass for ByT5Mapper.
Args:
x (Tensor): Input tensor of shape (..., in_dim).
Returns:
Tensor: Output tensor of shape (..., out_dim1).
"""
residual = x
x = self.layernorm(x)
x = self.fc1(x)
x = self.act_fn(x)
x = self.fc2(x)
x2 = self.act_fn(x)
x2 = self.fc3(x2)
if self.use_residual:
x2 = x2 + residual
return x2
|