KevinNg99's picture
Initial commit.
43c5292
from dataclasses import dataclass
from typing import Optional, Tuple
from copy import deepcopy
import torch
import torch.nn as nn
from transformers import AutoModelForVision2Seq, AutoTokenizer
from transformers.utils import ModelOutput
def use_default(value, default):
"""Utility: return value if not None, else default."""
return value if value is not None else default
# Prompt templates for different models and tasks
PROMPT_TEMPLATE_ENCODE = (
"<|start_header_id|>system<|end_header_id|>\n\nDescribe the image by detailing the color, shape, size, texture, "
"quantity, text, spatial relationships of the objects and background:<|eot_id|>"
"<|start_header_id|>user<|end_header_id|>\n\n{}<|eot_id|>"
)
PROMPT_TEMPLATE_ENCODE_V2 = (
"<|im_start|>system\nDescribe the image by detailing the color, shape, size, texture, "
"quantity, text, spatial relationships of the objects and background:<|im_end|>\n"
"<|im_start|>user\n{}<|im_end|>"
)
NEGATIVE_PROMPT = (
"Aerial view, aerial view, overexposed, low quality, deformation, a poor composition, "
"bad hands, bad teeth, bad eyes, bad limbs, distortion"
)
PROMPT_TEMPLATE = {
"dit-llm-encode": {
"template": PROMPT_TEMPLATE_ENCODE,
"crop_start": 36,
},
"dit-llm-encode-v2": {
"template": PROMPT_TEMPLATE_ENCODE_V2,
"crop_start": 34,
},
}
def load_text_encoder(
text_encoder_type,
text_encoder_precision=None,
text_encoder_path=None,
infer_mode="encoder",
logger=None,
device=None
):
"""
Load a text encoder model from pretrained weights.
Args:
text_encoder_type (str): Type of text encoder.
text_encoder_precision (str, optional): Precision for model weights.
text_encoder_path (str, optional): Path to pretrained weights.
infer_mode (str): "encoder" or "decoder".
logger (logging.Logger, optional): Logger for info.
device (torch.device, optional): Device to move model to.
Returns:
model (nn.Module): Loaded text encoder.
model_path (str): Path to model.
"""
if logger is not None:
logger.info(f"Loading text encoder model ({text_encoder_type}) from: {text_encoder_path}")
if text_encoder_type == 'llm':
text_encoder = AutoModelForVision2Seq.from_pretrained(
text_encoder_path,
torch_dtype="auto"
)
else:
raise ValueError(f"Unsupported text encoder type: {text_encoder_type}")
text_encoder.requires_grad_(False)
if logger is not None:
logger.info(f"Text encoder to dtype: {text_encoder.dtype}")
if device is not None:
text_encoder = text_encoder.to(device)
return text_encoder, text_encoder_path
def load_tokenizer(
tokenizer_type,
tokenizer_path=None,
padding_side="right",
logger=None
):
"""
Load a tokenizer from pretrained weights.
Args:
tokenizer_type (str): Type of tokenizer.
tokenizer_path (str, optional): Path to pretrained tokenizer.
padding_side (str): Padding side for tokenizer.
logger (logging.Logger, optional): Logger for info.
Returns:
tokenizer: Loaded tokenizer.
tokenizer_path (str): Path to tokenizer.
"""
if logger is not None:
logger.info(f"Loading tokenizer ({tokenizer_type}) from: {tokenizer_path}")
if tokenizer_type == "llm":
tokenizer = AutoTokenizer.from_pretrained(
tokenizer_path, use_fast=False, padding_side=padding_side, trust_remote_code=True)
else:
raise ValueError(f"Unsupported tokenizer type: {tokenizer_type}")
return tokenizer, tokenizer_path
@dataclass
class TextEncoderModelOutput(ModelOutput):
"""
Output for text encoder models.
Args:
hidden_state (torch.FloatTensor): Output hidden states of the last layer.
attention_mask (torch.LongTensor, optional): Attention mask for valid tokens.
hidden_states_list (tuple(torch.FloatTensor), optional): All hidden states if requested.
text_outputs (list, optional): Decoded texts if requested.
"""
hidden_state: torch.FloatTensor = None
attention_mask: Optional[torch.LongTensor] = None
hidden_states_list: Optional[Tuple[torch.FloatTensor, ...]] = None
text_outputs: Optional[list] = None
class TextEncoder(nn.Module):
"""
TextEncoder wraps a pretrained text encoder and tokenizer for flexible text encoding.
Args:
text_encoder_type (str): Type of text encoder.
max_length (int): Maximum sequence length.
text_encoder_precision (str, optional): Precision for model weights.
text_encoder_path (str, optional): Path to pretrained weights.
tokenizer_type (str, optional): Type of tokenizer.
tokenizer_path (str, optional): Path to pretrained tokenizer.
output_key (str, optional): Output key for model output.
use_attention_mask (bool): Whether to use attention mask.
infer_mode (str): "encoder" or "decoder".
input_max_length (int, optional): Max input length.
prompt_template (dict, optional): Prompt template for image.
prompt_template_video (dict, optional): Prompt template for video.
hidden_state_skip_layer (int, optional): Skip layers from last for hidden state.
apply_final_norm (bool): Whether to apply final layer norm.
reproduce (bool): Deterministic output if True.
logger (logging.Logger, optional): Logger for info.
device (torch.device, optional): Device to move model to.
"""
def __init__(
self,
text_encoder_type: str,
max_length: int,
text_encoder_precision: Optional[str] = None,
text_encoder_path: Optional[str] = None,
tokenizer_type: Optional[str] = None,
tokenizer_path: Optional[str] = None,
output_key: Optional[str] = None,
use_attention_mask: bool = True,
infer_mode: str = "encoder",
input_max_length: Optional[int] = None,
prompt_template: Optional[dict] = None,
prompt_template_video: Optional[dict] = None,
hidden_state_skip_layer: Optional[int] = None,
apply_final_norm: bool = False,
reproduce: bool = False,
logger=None,
device=None,
):
super().__init__()
self.text_encoder_type = text_encoder_type
self.max_length = max_length
self.precision = text_encoder_precision
self.model_path = text_encoder_path
self.tokenizer_type = tokenizer_type if tokenizer_type is not None else text_encoder_type
self.tokenizer_path = tokenizer_path if tokenizer_path is not None else text_encoder_path
self.use_attention_mask = use_attention_mask
self.input_max_length = input_max_length if input_max_length is not None else max_length
self.prompt_template = dict(prompt_template) if prompt_template is not None else None
self.prompt_template_video = dict(prompt_template_video) if prompt_template_video is not None else None
self.hidden_state_skip_layer = hidden_state_skip_layer
self.apply_final_norm = apply_final_norm
self.infer_mode = infer_mode
self.reproduce = reproduce
self.logger = logger
self.use_template = self.prompt_template is not None
if self.use_template:
assert isinstance(self.prompt_template, dict) and "template" in self.prompt_template, (
f"`prompt_template` must be a dictionary with a key 'template', got {self.prompt_template}"
)
if self.prompt_template_video is not None:
assert isinstance(self.prompt_template_video, dict) and "template" in self.prompt_template_video, (
f"`prompt_template_video` must be a dictionary with a key 'template', got {self.prompt_template_video}"
)
assert '{}' in str(self.prompt_template["template"]), (
"`prompt_template['template']` must contain a placeholder `{}` for the input text, "
f"got {self.prompt_template['template']}"
)
if infer_mode == "decoder":
assert text_encoder_type in ["llava-llama-3-8b"], (
f"Unsupported text encoder type for infer_mode='decoder': {text_encoder_type}"
)
assert self.prompt_template is not None and hidden_state_skip_layer is not None, (
f"`prompt_template` and `hidden_state_skip_layer` must be provided for infer_mode='decoder', "
f"got prompt_template={self.prompt_template}, hidden_state_skip_layer={self.hidden_state_skip_layer}"
)
if "t5" in text_encoder_type:
self.output_key = output_key or "last_hidden_state"
elif "clip" in text_encoder_type:
self.output_key = output_key or "pooler_output"
elif any(x in text_encoder_type for x in ["llm"]):
self.output_key = output_key or ("last_hidden_state" if infer_mode == "encoder" else None)
else:
raise ValueError(f"Unsupported text encoder type: {text_encoder_type}")
self.model, self.model_path = load_text_encoder(
text_encoder_type=self.text_encoder_type,
text_encoder_precision=self.precision,
text_encoder_path=self.model_path,
infer_mode=self.infer_mode,
logger=self.logger,
device=device
)
self.dtype = self.model.dtype
self.device = self.model.device
padding_side = "right" if self.infer_mode == "encoder" else "left"
self.tokenizer, self.tokenizer_path = load_tokenizer(
tokenizer_type=self.tokenizer_type,
tokenizer_path=self.tokenizer_path,
padding_side=padding_side,
logger=self.logger
)
def __repr__(self):
return f"{self.text_encoder_type} ({self.precision} - {self.model_path})"
@staticmethod
def apply_text_to_template(text, template, prevent_empty_text=True):
"""
Apply text to a prompt template.
Args:
text (str): Input text.
template (str or list): Template string or list of chat conversation.
prevent_empty_text (bool): If True, prevent empty user text by adding a space.
Returns:
str or list: Text with template applied.
"""
if isinstance(template, str):
return template.format(text)
elif isinstance(template, list):
conversation = deepcopy(template)
for message in conversation:
if '{}' in message.get("content", ""):
filled_text = message["content"].format(text)
if prevent_empty_text and len(filled_text) == 0:
filled_text = ' '
message["content"] = filled_text
break # Only one placeholder per conversation
return conversation
else:
raise TypeError(f"Unsupported template type: {type(template)}")
def text2tokens(self, text, data_type='image'):
"""
Tokenize the input text, optionally applying a prompt template.
Args:
text (str or list): Input text.
data_type (str): 'image' or 'video'.
Returns:
dict: Tokenized input.
"""
tokenize_input_type = 'str'
if self.use_template:
if data_type == 'image':
prompt_template = self.prompt_template["template"]
elif data_type == 'video':
prompt_template = self.prompt_template_video["template"]
else:
raise ValueError(f"Unsupported data type: {data_type}")
if isinstance(text, (list, tuple)):
text = [self.apply_text_to_template(one_text, prompt_template) for one_text in text]
if isinstance(text[0], list):
tokenize_input_type = 'list'
elif isinstance(text, str):
text = self.apply_text_to_template(text, prompt_template)
if isinstance(text, list):
tokenize_input_type = 'list'
else:
raise TypeError(f"Unsupported text type: {type(text)}")
kwargs = dict(truncation=True, max_length=self.max_length, padding="max_length", return_tensors="pt")
if tokenize_input_type == 'str':
return self.tokenizer(
text,
return_length=False,
return_overflowing_tokens=False,
return_attention_mask=True,
**kwargs,
)
elif tokenize_input_type == 'list':
return self.tokenizer.apply_chat_template(
text,
add_generation_prompt=True,
tokenize=True,
return_dict=True,
**kwargs,
)
else:
raise ValueError(f"Unsupported tokenize_input_type: {tokenize_input_type}")
def encode(
self,
batch_encoding,
use_attention_mask=None,
output_hidden_states=False,
do_sample=None,
hidden_state_skip_layer=None,
return_texts=False,
data_type='image',
device=None
):
"""
Encode tokenized input using the text encoder.
Args:
batch_encoding (dict): Batch encoding from tokenizer.
use_attention_mask (bool, optional): Whether to use attention mask.
output_hidden_states (bool): Whether to output all hidden states.
do_sample (bool, optional): Whether to sample from the model (for decoder-only LLMs).
hidden_state_skip_layer (int, optional): Number of layers to skip from last for hidden state.
return_texts (bool): Whether to return decoded texts.
data_type (str): 'image' or 'video'.
device (torch.device, optional): Device to use.
Returns:
TextEncoderModelOutput: Encoded output.
"""
use_attention_mask = use_default(use_attention_mask, self.use_attention_mask)
hidden_state_skip_layer = use_default(hidden_state_skip_layer, self.hidden_state_skip_layer)
do_sample = use_default(do_sample, not self.reproduce)
if self.infer_mode == "encoder":
attention_mask = batch_encoding["attention_mask"].to(self.model.device) if use_attention_mask else None
if 'Gemma2' in self.text_encoder_type:
input_ids = batch_encoding["input_ids"].to(self.model.device)
_, inputs_embeds, labels, attention_mask = self.model.merge_multimodal(
text_input_ids=input_ids,
text_attention_masks=attention_mask,
text_labels=None,
pixel_values=[None]
)
outputs = self.model.llm(inputs_embeds=inputs_embeds, labels=labels, attention_mask=attention_mask)
else:
outputs = self.model(
input_ids=batch_encoding["input_ids"].to(self.model.device),
attention_mask=attention_mask,
output_hidden_states=output_hidden_states or hidden_state_skip_layer is not None,
)
if hidden_state_skip_layer is not None:
last_hidden_state = outputs.hidden_states[-(hidden_state_skip_layer + 1)]
# Apply final norm for intermediate layers if requested
if hidden_state_skip_layer > 0 and self.apply_final_norm:
last_hidden_state = self.model.final_layer_norm(last_hidden_state)
else:
last_hidden_state = outputs[self.output_key]
# Remove hidden states of instruction tokens, only keep prompt tokens.
if self.use_template:
if data_type == 'image':
crop_start = self.prompt_template.get("crop_start", -1)
elif data_type == 'video':
crop_start = self.prompt_template_video.get("crop_start", -1)
else:
raise ValueError(f"Unsupported data type: {data_type}")
if crop_start > 0:
last_hidden_state = last_hidden_state[:, crop_start:]
attention_mask = attention_mask[:, crop_start:] if use_attention_mask else None
if output_hidden_states:
return TextEncoderModelOutput(last_hidden_state, attention_mask, outputs.hidden_states)
return TextEncoderModelOutput(last_hidden_state, attention_mask)
elif self.infer_mode == "decoder":
# Remove leading padding tokens
input_max_valid_tokens = batch_encoding["attention_mask"].sum(dim=1).max().item()
if input_max_valid_tokens < batch_encoding["attention_mask"].shape[1]:
batch_encoding = {
"input_ids": batch_encoding["input_ids"][:, -input_max_valid_tokens:],
"attention_mask": batch_encoding["attention_mask"][:, -input_max_valid_tokens:],
}
# Generate text from the model.
outputs = self.model.generate(
input_ids=batch_encoding["input_ids"].to(self.model.device),
attention_mask=batch_encoding["attention_mask"].to(self.model.device) if use_attention_mask else None,
max_new_tokens=self.max_length,
do_sample=do_sample,
return_dict_in_generate=True,
output_hidden_states=True,
stop_strings='<|eot_id|>', tokenizer=self.tokenizer,
pad_token_id=self.tokenizer.eos_token_id,
)
# Concatenate hidden states from all generated tokens.
hidden_states = torch.cat([
per_token_hidden_states[-(hidden_state_skip_layer + 1)]
for per_token_hidden_states in outputs.hidden_states[1:]
], dim=1)
if self.apply_final_norm:
hidden_states = self.model.final_layer_norm(hidden_states)
# Make sequence mask from output sequences
output_max_valid_tokens = hidden_states.shape[1]
attention_mask = (outputs.sequences[:, -output_max_valid_tokens - 1:-1] != self.tokenizer.eos_token_id).long()
if return_texts:
text_outputs = self.tokenizer.batch_decode(outputs.sequences, skip_special_tokens=False)
return TextEncoderModelOutput(hidden_states, attention_mask, None, text_outputs)
else:
return TextEncoderModelOutput(hidden_states, attention_mask)
else:
raise ValueError(f"Unsupported text encoder infer mode: {self.infer_mode}")
def forward(
self,
text,
use_attention_mask=None,
output_hidden_states=False,
do_sample=False,
hidden_state_skip_layer=None,
return_texts=False
):
"""
Forward pass: encode text to hidden states.
Args:
text (str or list): Input text.
use_attention_mask (bool, optional): Whether to use attention mask.
output_hidden_states (bool): Whether to output all hidden states.
do_sample (bool): Whether to sample from the model (for decoder-only LLMs).
hidden_state_skip_layer (int, optional): Number of layers to skip from last for hidden state.
return_texts (bool): Whether to return decoded texts.
Returns:
TextEncoderModelOutput: Encoded output.
"""
batch_encoding = self.text2tokens(text)
return self.encode(
batch_encoding,
use_attention_mask=use_attention_mask,
output_hidden_states=output_hidden_states,
do_sample=do_sample,
hidden_state_skip_layer=hidden_state_skip_layer,
return_texts=return_texts
)