Spaces:
Running
Running
File size: 5,586 Bytes
d805091 7794b2d d805091 7794b2d d805091 7794b2d d805091 7794b2d d805091 d86ac9a d805091 d86ac9a d805091 d86ac9a d805091 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 |
from openai import OpenAI # type: ignore
import os
def call_openai(
user_prompt,
chat_history: list[tuple[str, str]],
system_prompt,
max_tokens,
temperature,
top_p,
file_upload=None,
image_upload=None
):
if file_upload == None:
try:
pass
except:
pass
if image_upload == None:
try:
pass
except:
pass
#read system message
messages = [{"role": "system", "content": system_prompt}]
#read history
for user_chat, assistant_chat in chat_history:
if user_chat:
messages.append({"role": "user", "content": user_chat})
if assistant_chat:
messages.append({"role": "assistant", "content": assistant_chat})
#read output
messages.append({"role": "user", "content": user_prompt})
print("## Messages: \n", messages) #debug output
#create output
response = OpenAI().responses.create(
model="gpt-4.1-nano",
input=messages,
temperature=temperature,
top_p=top_p,
max_output_tokens=max_tokens
)
#read output
response = response.output_text
print("## Response: ", response) #debug output
print("\n")
yield response #chat reply
deepseek = OpenAI(api_key = os.getenv("DEEPSEEK_API_KEY"), base_url="https://api.deepseek.com")
def call_deepseek(
user_prompt: str,
chat_history: list[tuple[str, str]],
system_prompt: str,
max_tokens: int,
temperature: float,
top_p: float,
file_upload=None,
image_upload=None
):
"""
Gọi DeepSeek Chat qua OpenAI-compatible API (không stream).
- file_upload và image_upload tùy chọn (None để bỏ qua xử lý).
Trả về:
- reply (str): nội dung model sinh ra.
"""
# 1. Xử lý tùy chọn file (nếu có)
if file_upload == None:
try:
pass
except:
pass
if image_upload == None:
try:
pass
except:
pass
# 3. Xây dựng messages lịch sử chat
messages = [{"role": "system", "content": system_prompt}]
for user_msg, ai_msg in chat_history:
if user_msg:
messages.append({"role": "user", "content": user_msg})
if ai_msg:
messages.append({"role": "assistant", "content": ai_msg})
# Thêm prompt hiện tại của user
messages.append({"role": "user", "content": user_prompt})
# 4. Gọi API DeepSeek Chat (OpenAI-compatible)
response = OpenAI(api_key = os.getenv("DEEPSEEK_API_KEY"), base_url="https://api.deepseek.com").chat.completions.create(
model="deepseek-chat", # hoặc model bạn cấu hình
messages=messages,
temperature=temperature,
top_p=top_p,
max_tokens=max_tokens
)
# 5. Trích xuất kết quả trả về
reply = response.choices[0].message.content
return reply
# 1. Hàm gọi DeepSeek + build/append history
def call_deepseek_new(
user_prompt,
chat_history, # sẽ là [{"role":"user"/"assistant","content":...}, …]
# system_prompt: str,
# max_tokens: int,
# temperature: float,
# top_p: float,
# file_upload=None,
# image_upload=None
):
# Khởi tạo history nếu None
history = chat_history or []
# Append system prompt (chỉ ở lần đầu nếu bạn muốn)
# if not any(m["role"]=="system" for m in history):
# history.insert(0, {"role": "system", "content": system_prompt})
# Append message mới của user
history.append({"role": "user", "content": user_prompt})
# Gọi API DeepSeek Chat (OpenAI-compatible, không stream)
response = deepseek.chat.completions.create(
model = "deepseek-chat", # hoặc model bạn đã config
messages = history,
# temperature= temperature,
# top_p = top_p,
# max_tokens = max_tokens
)
# Lấy nội dung assistant trả về
reply = response.choices[0].message.content
# Append vào history
history.append({"role": "assistant", "content": reply})
# Trả về 2 outputs: toàn bộ history và đúng reply để render Markdown
return history, reply
"""
Không có billing nên không xài được replicate
"""
# import replicate
# def deepseek_api_replicate(
# user_prompt,
# history: list[tuple[str, str]],
# system_prompt,
# max_new_tokens,
# temperature,
# top_p):
# """
# Gọi DeepSeek Math trên Replicate và trả ngay kết quả.
# Trả về:
# str hoặc [bytes]: output model sinh ra
# """
# # 1. Khởi tạo client và xác thực
# # token = os.getenv("REPLICATE_API_TOKEN")
# # if not token:
# # raise RuntimeError("Missing REPLICATE_API_TOKEN") # bảo mật bằng biến môi trường
# client = replicate.Client(api_token="REPLICATE_API_TOKEN")
# # 2. Gọi model
# output = client.run(
# "deepseek-ai/deepseek-math-7b-base:61f572dae0985541cdaeb4a114fd5d2d16cb40dac3894da10558992fc60547c7",
# input={
# "system_prompt": system_prompt,
# "user_prompt": user_prompt,
# "max_new_tokens": max_new_tokens,
# "temperature": temperature,
# "top_p": top_p
# }
# )
# # 3. Trả kết quả
# return output |