thanglekdi's picture
test deepseek
3afc718
# import gradio as gr # type: ignore
# from huggingface_hub import InferenceClient # type: ignore
# """
# For more information on `huggingface_hub` Inference API support, please check the docs: https://huggingface.co/docs/huggingface_hub/v0.22.2/en/guides/inference
# """
# client = InferenceClient("HuggingFaceH4/zephyr-7b-beta")
# def respond(
# message,
# history: list[tuple[str, str]],
# system_message,
# max_tokens,
# temperature,
# top_p,
# ):
# messages = [{"role": "system", "content": system_message}]
# for val in history:
# if val[0]:
# messages.append({"role": "user", "content": val[0]})
# if val[1]:
# messages.append({"role": "assistant", "content": val[1]})
# messages.append({"role": "user", "content": message})
# response = ""
# for message in client.chat_completion(
# messages,
# max_tokens=max_tokens,
# stream=True,
# temperature=temperature,
# top_p=top_p,
# ):
# token = message.choices[0].delta.content
# response += token
# yield response
# """
# For information on how to customize the ChatInterface, peruse the gradio docs: https://www.gradio.app/docs/chatinterface
# """
# demo = gr.ChatInterface(
# respond,
# additional_inputs=[
# gr.Textbox(value="You are a friendly Chatbot.", label="System message"),
# gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"),
# gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"),
# gr.Slider(
# minimum=0.1,
# maximum=1.0,
# value=0.95,
# step=0.05,
# label="Top-p (nucleus sampling)",
# ),
# ],
# )
# if __name__ == "__main__":
# demo.launch()
# ###########################
# # app.py
# import gradio as gr # type: ignore
# import os
# # import openai # type: ignore
# # # openai.api_key = os.getenv("OPENAI_API_KEY")
# # client = openai.OpenAI()
# # def respond(
# # message,
# # history: list[tuple[str, str]],
# # system_message,
# # max_tokens,
# # temperature,
# # top_p,
# # image_uploaded,
# # file_uploaded
# # ):
# # #read system message
# # messages = [{"role": "system", "content": system_message}]
# # #read history
# # for val in history:
# # if val[0]:
# # messages.append({"role": "user", "content": val[0]})
# # if val[1]:
# # messages.append({"role": "assistant", "content": val[1]})
# # #read output
# # messages.append({"role": "user", "content": message})
# # print("## Messages: \n", messages) #debug output
# # #create output
# # response = client.responses.create(
# # model="gpt-4.1-nano",
# # input=messages,
# # temperature=temperature,
# # top_p=top_p,
# # max_output_tokens=max_tokens
# # )
# # #read output
# # response = response.output_text
# # print("## Response: ", response) #debug output
# # print("\n")
# # yield response #chat reply
# # import torch
# # from transformers import AutoTokenizer, AutoModelForCausalLM, GenerationConfig
# # model_name = "deepseek-ai/deepseek-math-7b-base"
# # tokenizer = AutoTokenizer.from_pretrained(model_name)
# # model = AutoModelForCausalLM.from_pretrained(model_name)
# # # model.generation_config = GenerationConfig.from_pretrained(model_name)
# # # model.generation_config.pad_token_id = model.generation_config.eos_token_id
# # def deepseek(
# # message,
# # history: list[tuple[str, str]],
# # system_message,
# # max_tokens,
# # temperature,
# # top_p):
# # # messages = [
# # # {"role": "user", "content": "what is the integral of x^2 from 0 to 2?\nPlease reason step by step, and put your final answer within \\boxed{}."}
# # # ]
# # messages = [
# # {"role": "user", "content": message}
# # ]
# # input_tensor = tokenizer.apply_chat_template(messages, add_generation_prompt=True, return_tensors="pt")
# # outputs = model.generate(input_tensor.to(model.device), max_new_tokens=100)
# # print(outputs)
# # print("\n")
# # result = tokenizer.decode(outputs[0][input_tensor.shape[1]:], skip_special_tokens=True)
# # print(result)
# # return result
# # import replicate
# # def deepseek_api_replicate(
# # user_message,
# # history: list[tuple[str, str]],
# # system_message,
# # max_new_tokens,
# # temperature,
# # top_p):
# # """
# # Gọi DeepSeek Math trên Replicate và trả ngay kết quả.
# # Trả về:
# # str hoặc [bytes]: output model sinh ra
# # """
# # # 1. Khởi tạo client và xác thực
# # # token = os.getenv("REPLICATE_API_TOKEN")
# # # if not token:
# # # raise RuntimeError("Missing REPLICATE_API_TOKEN") # bảo mật bằng biến môi trường
# # client = replicate.Client(api_token="REPLICATE_API_TOKEN")
# # # 2. Gọi model
# # output = client.run(
# # "deepseek-ai/deepseek-math-7b-base:61f572dae0985541cdaeb4a114fd5d2d16cb40dac3894da10558992fc60547c7",
# # input={
# # "system_prompt": system_message,
# # "user_prompt": user_message,
# # "max_new_tokens": max_new_tokens,
# # "temperature": temperature,
# # "top_p": top_p
# # }
# # )
# # # 3. Trả kết quả
# # return output
# import call_api
# chat = gr.ChatInterface(
# call_api.respond, #chat
# title="Trợ lý Học Tập AI",
# description="Nhập câu hỏi của bạn về Toán, Lý, Hóa, Văn… và nhận giải đáp chi tiết ngay lập tức!",
# additional_inputs=[
# gr.Textbox("Bạn là một chatbot tiếng Việt thân thiện.", label="System message"),
# gr.Slider(1, 2048, value=200, step=1, label="Max new tokens"),
# gr.Slider(0.1, 4.0, value=0.7, step=0.1, label="Temperature"),
# gr.Slider(0.1, 1.0, value=0.95, step=0.05, label="Top-p (nucleus sampling)"),
# # gr.Image(type="pil", label="Attach an image (optional)"),
# # gr.File(label="Upload a file (optional)"),
# ],
# examples=[
# # Mỗi item: [message, system_message, max_tokens, temperature, top_p]
# ["tích phân của x^2 từ 0 đến 2 là gì? vui lòng lập luận từng bước, và đặt kết quả cuối cùng trong \boxed{}", "bạn là nhà toán học", 100, 0.7, 0.95],
# ],
# )
# if __name__ == "__main__":
# chat.launch()