the11's picture
Upload 9 files
a704a0c verified
import os
import PyPDF2
from sentence_transformers import SentenceTransformer
import faiss
import numpy as np
from rapidfuzz import fuzz
embedder = SentenceTransformer("all-MiniLM-L6-v2")
faiss_index = None
pdf_chunks = []
chunk_texts = []
def process_pdfs(pdf_files):
global faiss_index, pdf_chunks, chunk_texts
all_text = ""
chunk_texts = []
for pdf_file in pdf_files:
reader = PyPDF2.PdfReader(pdf_file.name)
for page in reader.pages:
all_text += page.extract_text() + "\n"
chunk_size = 500
pdf_chunks = [all_text[i:i+chunk_size] for i in range(0, len(all_text), chunk_size)]
chunk_texts = pdf_chunks
embeddings = embedder.encode(pdf_chunks, convert_to_numpy=True)
dim = embeddings.shape[1]
faiss_index = faiss.IndexFlatL2(dim)
faiss_index.add(embeddings)
return f"Processed {len(pdf_chunks)} chunks from {len(pdf_files)} PDF(s)."
def semantic_search(query, top_k=3):
global faiss_index, chunk_texts
if faiss_index is None or not chunk_texts:
return []
query_emb = embedder.encode([query], convert_to_numpy=True)
D, I = faiss_index.search(query_emb, top_k)
return [chunk_texts[i] for i in I[0] if i < len(chunk_texts)]
def keyword_search(query, top_k=3):
global chunk_texts
if not chunk_texts:
return []
scored = [(chunk, fuzz.partial_ratio(query.lower(), chunk.lower())) for chunk in chunk_texts]
scored = sorted(scored, key=lambda x: x[1], reverse=True)
return [chunk for chunk, score in scored[:top_k]]
def retrieve_context(query, top_k=3):
semantic_results = semantic_search(query, top_k)
keyword_results = keyword_search(query, top_k)
combined = []
seen = set()
for chunk in semantic_results + keyword_results:
if chunk not in seen:
combined.append(chunk)
seen.add(chunk)
return "\n".join(combined)