import timm from fastai.vision.all import PILImage, load_learner import gradio as gr import pathlib import torch pathlib.WindowsPath = pathlib.PosixPath learn = load_learner('convnet_final3.pkl') categories = ('audi', 'bmw', 'mercedes', 'volvo') def classify_image(img): pred, idx, probs = learn.predict(img) return dict(zip(categories, map(float, probs))) image = gr.inputs.Image(shape=(300,300)) label = gr.outputs.Label() intf = gr.Interface(fn=classify_image, inputs=image, outputs = label) intf.launch(inline=False)