File size: 2,923 Bytes
b7658fb 6b64262 3f97053 4324db0 3f97053 4324db0 6b64262 3f97053 6b64262 4324db0 6b64262 4324db0 6b64262 4324db0 21a831f 4324db0 21a831f 4324db0 21a831f 4324db0 6b64262 21a831f 6b64262 4324db0 6b64262 21a831f 6b64262 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 |
import os
import subprocess
import sys
from pathlib import Path
# --- 1. Clone the VibeVoice Repository ---
repo_dir = "VibeVoice"
if not os.path.exists(repo_dir):
print("Cloning the VibeVoice repository...")
try:
subprocess.run(
["git", "clone", "https://github.com/microsoft/VibeVoice.git"],
check=True,
capture_output=True,
text=True
)
print("Repository cloned successfully.")
except subprocess.CalledProcessError as e:
print(f"Error cloning repository: {e.stderr}")
sys.exit(1)
else:
print("Repository already exists. Skipping clone.")
# --- 2. Install the Package ---
os.chdir(repo_dir)
print(f"Changed directory to: {os.getcwd()}")
print("Installing the VibeVoice package...")
try:
subprocess.run(
[sys.executable, "-m", "pip", "install", "-e", "."],
check=True,
capture_output=True,
text=True
)
print("Package installed successfully.")
except subprocess.CalledProcessError as e:
print(f"Error installing package: {e.stderr}")
sys.exit(1)
# --- 3. Modify the demo script for CPU execution (Robust Method) ---
demo_script_path = Path("demo/gradio_demo.py")
print(f"Modifying {demo_script_path} for CPU execution...")
try:
# Read the entire file content
file_content = demo_script_path.read_text()
# Define the original GPU-specific model loading block
original_block = """ self.model = VibeVoiceForConditionalGenerationInference.from_pretrained(
self.model_path,
torch_dtype=torch.bfloat16,
device_map='cuda',
attn_implementation="flash_attention_2",
)"""
# Define the new CPU-compatible block
replacement_block = """ self.model = VibeVoiceForConditionalGenerationInference.from_pretrained(
self.model_path,
torch_dtype=torch.float32, # Use float32 for CPU
device_map="cpu",
)"""
# Replace the entire block
if original_block in file_content:
modified_content = file_content.replace(original_block, replacement_block)
# Write the modified content back to the file
demo_script_path.write_text(modified_content)
print("Script modified successfully.")
else:
print("Warning: GPU-specific model loading block not found. The script might have been updated. Proceeding without modification.")
except Exception as e:
print(f"An error occurred while modifying the script: {e}")
sys.exit(1)
# --- 4. Launch the Gradio Demo ---
model_id = "microsoft/VibeVoice-1.5B"
# Construct the command as specified in the README
command = [
"python",
str(demo_script_path),
"--model_path",
model_id,
"--share"
]
print(f"Launching Gradio demo with command: {' '.join(command)}")
# This command will start the Gradio server
subprocess.run(command) |