import os import tempfile import torch import time import numpy as np import random from pathlib import Path from AdaIN import AdaINNet from PIL import Image from torchvision.utils import save_image from torchvision.transforms import ToPILImage from utils import adaptive_instance_normalization, grid_image, transform,linear_histogram_matching, Range from glob import glob from datasets import load_dataset device = torch.device('cuda' if torch.cuda.is_available() else 'cpu') def style_transfer(content_tensor, style_tensor, encoder, decoder, alpha=1.0): """ Given content image and style image, generate feature maps with encoder, apply neural style transfer with adaptive instance normalization, generate output image with decoder Args: content_tensor (torch.FloatTensor): Content image style_tensor (torch.FloatTensor): Style Image encoder: Encoder (vgg19) network decoder: Decoder network alpha (float, default=1.0): Weight of style image feature Return: output_tensor (torch.FloatTensor): Style Transfer output image """ content_enc = encoder(content_tensor) style_enc = encoder(style_tensor) transfer_enc = adaptive_instance_normalization(content_enc, style_enc) mix_enc = alpha * transfer_enc + (1-alpha) * content_enc return decoder(mix_enc) def run_adain(content_dir, style_dataset_pth, out_dir, alpha=1.0, dataset_size=100, vgg_pth='vgg_normalized.pth', decoder_pth='decoder.pth'): content_pths = [Path(f) for f in glob(content_dir+'/*')] num_content_imgs = len(content_pths) assert num_content_imgs > 0, 'Failed to load content image' # Load AdaIN model vgg = torch.load(vgg_pth) model = AdaINNet(vgg).to(device) model.decoder.load_state_dict(torch.load(decoder_pth)) model.eval() # Prepare image transform t = transform(512) # Timer times = [] style_ds = load_dataset(style_dataset_pth, split="train", token=os.getenv("PALEO_SECRET")) if num_content_imgs * len(style_ds) > dataset_size: num_style_per_content = int(np.ceil(dataset_size / num_content_imgs)) else: num_style_per_content = len(style_ds) for content_pth in content_pths: content_img = Image.open(content_pth) content_tensor = t(content_img).unsqueeze(0).to(device) indices = random.sample(range(len(style_ds)), num_style_per_content) for idx in indices: style_img = style_ds[idx]['image'] if not style_img.mode == "RGB": style_img = style_img.convert("RGB") style_tensor = t(style_img).unsqueeze(0).to(device) # Execute style transfer with torch.no_grad(): out_tensor = style_transfer(content_tensor, style_tensor, model.encoder, model.decoder, alpha).cpu() # Save image out_pth = os.path.join(out_dir, content_pth.stem + '_style_' + str(idx) + '_alpha' + str(alpha) + content_pth.suffix) save_image(out_tensor, out_pth) print(f"Style transferred image saved to {out_pth}")