File size: 4,182 Bytes
39bbed9
 
 
 
261b519
 
 
21e3f5a
 
 
 
 
0511196
713fbb7
e23ae72
21e3f5a
 
 
 
 
 
 
 
 
 
 
 
812eb58
 
 
 
21e3f5a
 
 
 
 
 
 
 
 
 
484275c
21e3f5a
 
 
 
 
 
812eb58
 
 
 
 
21e3f5a
 
0798356
21e3f5a
 
 
 
 
 
 
c9cdfa7
21e3f5a
 
 
a541e3c
 
1dddb89
 
 
 
a541e3c
21e3f5a
 
e3b4b18
 
21e3f5a
 
e3b4b18
21e3f5a
e578635
 
 
 
261bf27
3dd0091
e578635
 
21e3f5a
 
 
 
 
 
 
 
 
 
0511196
21e3f5a
 
 
 
 
 
 
 
 
 
 
f9149d4
 
21e3f5a
 
0511196
21e3f5a
 
 
 
e23ae72
21e3f5a
 
 
713fbb7
21e3f5a
0798356
 
 
a541e3c
 
21e3f5a
1dddb89
cba5002
1dddb89
f9149d4
21e3f5a
812eb58
 
0798356
812eb58
 
f9149d4
812eb58
21e3f5a
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
#!/usr/bin/env python3
# -*- coding:utf-8 -*-
# Copyright (c) Megvii, Inc. and its affiliates.

import argparse
import random
import warnings
from loguru import logger

import torch
import torch.backends.cudnn as cudnn

from yolox.core import launch
from yolox.exp import Exp, check_exp_value, get_exp
from yolox.utils import configure_module, configure_nccl, configure_omp, get_num_devices


def make_parser():
    parser = argparse.ArgumentParser("YOLOX train parser")
    parser.add_argument("-expn", "--experiment-name", type=str, default=None)
    parser.add_argument("-n", "--name", type=str, default=None, help="model name")

    # distributed
    parser.add_argument(
        "--dist-backend", default="nccl", type=str, help="distributed backend"
    )
    parser.add_argument(
        "--dist-url",
        default=None,
        type=str,
        help="url used to set up distributed training",
    )
    parser.add_argument("-b", "--batch-size", type=int, default=64, help="batch size")
    parser.add_argument(
        "-d", "--devices", default=None, type=int, help="device for training"
    )
    parser.add_argument(
        "-f",
        "--exp_file",
        default=None,
        type=str,
        help="plz input your experiment description file",
    )
    parser.add_argument(
        "--resume", default=False, action="store_true", help="resume training"
    )
    parser.add_argument("-c", "--ckpt", default=None, type=str, help="checkpoint file")
    parser.add_argument(
        "-e",
        "--start_epoch",
        default=None,
        type=int,
        help="resume training start epoch",
    )
    parser.add_argument(
        "--num_machines", default=1, type=int, help="num of node for training"
    )
    parser.add_argument(
        "--machine_rank", default=0, type=int, help="node rank for multi-node training"
    )
    parser.add_argument(
        "--fp16",
        dest="fp16",
        default=False,
        action="store_true",
        help="Adopting mix precision training.",
    )
    parser.add_argument(
        "--cache",
        type=str,
        nargs="?",
        const="ram",
        help="Caching imgs to ram/disk for fast training.",
    )
    parser.add_argument(
        "-o",
        "--occupy",
        dest="occupy",
        default=False,
        action="store_true",
        help="occupy GPU memory first for training.",
    )
    parser.add_argument(
        "-l",
        "--logger",
        type=str,
        help="Logger to be used for metrics. \
                Implemented loggers include `tensorboard`, `mlflow` and `wandb`.",
        default="tensorboard"
    )
    parser.add_argument(
        "opts",
        help="Modify config options using the command-line",
        default=None,
        nargs=argparse.REMAINDER,
    )
    return parser


@logger.catch
def main(exp: Exp, args):
    if exp.seed is not None:
        random.seed(exp.seed)
        torch.manual_seed(exp.seed)
        cudnn.deterministic = True
        warnings.warn(
            "You have chosen to seed training. This will turn on the CUDNN deterministic setting, "
            "which can slow down your training considerably! You may see unexpected behavior "
            "when restarting from checkpoints."
        )

    # set environment variables for distributed training
    configure_nccl()
    configure_omp()
    cudnn.benchmark = True

    trainer = exp.get_trainer(args)
    trainer.train()


if __name__ == "__main__":
    configure_module()
    args = make_parser().parse_args()
    exp = get_exp(args.exp_file, args.name)
    exp.merge(args.opts)
    check_exp_value(exp)

    if not args.experiment_name:
        args.experiment_name = exp.exp_name

    num_gpu = get_num_devices() if args.devices is None else args.devices
    assert num_gpu <= get_num_devices()

    if args.cache is not None:
        exp.dataset = exp.get_dataset(cache=True, cache_type=args.cache)

    dist_url = "auto" if args.dist_url is None else args.dist_url
    launch(
        main,
        num_gpu,
        args.num_machines,
        args.machine_rank,
        backend=args.dist_backend,
        dist_url=dist_url,
        args=(exp, args),
    )