Spaces:
Running
Running
File size: 1,744 Bytes
6441bc6 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 |
---
title: FutureBench Leaderboard
emoji: ๐ฎ
colorFrom: blue
colorTo: purple
sdk: gradio
sdk_version: 4.44.0
app_file: app.py
pinned: false
---
# FutureBench Leaderboard App
A minimal Gradio application for viewing FutureBench prediction data. This app downloads datasets from HuggingFace on startup and provides a web interface to explore the data.
## Features
- ๐ **Data Summary**: View dataset statistics and information
- ๐ **Sample Data**: Browse sample prediction records
- ๐ **About**: Learn about the FutureBench system
- ๐ **Auto-refresh**: Download latest data on startup
- ๐
**Date Range Slider**: Filter the leaderboard by a custom date span
## Setup
1. Install dependencies:
```bash
pip install -r requirements.txt
```
2. (Optional) Set your HuggingFace token for private repositories:
```bash
export HF_TOKEN=your_token_here
```
## Running the App
Launch the Gradio application:
```bash
python app.py
```
The app will:
1. Download datasets from HuggingFace repositories on startup
2. Process the data and create summaries
3. Launch a web interface at `http://localhost:7860`
## Data Sources
The app downloads data from these HuggingFace repositories:
- `futurebench/requests` - Evaluation queue
- `futurebench/results` - Evaluation results
- `futurebench/data` - Main prediction dataset
## Structure
- `app.py` - Main Gradio application
- `process_data/` - Data processing utilities
- `requirements.txt` - Python dependencies
- `README.md` - This file
## Next Steps
This is a minimal version focusing on data download and display. Future enhancements will include:
- Full leaderboard with model rankings
- Interactive filtering and sorting
- Detailed performance metrics
- Model comparison tools
|