Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
|
@@ -1,28 +1,45 @@
|
|
| 1 |
import gradio as gr
|
| 2 |
-
from transformers import
|
| 3 |
import torch
|
|
|
|
| 4 |
|
| 5 |
# Charger le modèle audio-to-text
|
| 6 |
model_name = "fixie-ai/ultravox-v0_4_1-llama-3_1-8b"
|
| 7 |
|
| 8 |
-
# Initialiser le
|
| 9 |
try:
|
| 10 |
-
|
|
|
|
|
|
|
|
|
|
| 11 |
except Exception as e:
|
| 12 |
print(f"Erreur lors du chargement du modèle: {e}")
|
| 13 |
-
|
|
|
|
| 14 |
|
| 15 |
def transcribe_audio(audio):
|
| 16 |
"""
|
| 17 |
Fonction pour transcrire l'audio en texte
|
| 18 |
"""
|
| 19 |
-
if
|
| 20 |
return "Erreur: Le modèle n'a pas pu être chargé."
|
| 21 |
|
| 22 |
try:
|
| 23 |
-
|
| 24 |
-
|
| 25 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 26 |
except Exception as e:
|
| 27 |
return f"Erreur lors de la transcription: {str(e)}"
|
| 28 |
|
|
|
|
| 1 |
import gradio as gr
|
| 2 |
+
from transformers import AutoProcessor, AutoModelForSpeechSeq2Seq
|
| 3 |
import torch
|
| 4 |
+
import torchaudio
|
| 5 |
|
| 6 |
# Charger le modèle audio-to-text
|
| 7 |
model_name = "fixie-ai/ultravox-v0_4_1-llama-3_1-8b"
|
| 8 |
|
| 9 |
+
# Initialiser le modèle et le processeur
|
| 10 |
try:
|
| 11 |
+
device = "cuda" if torch.cuda.is_available() else "cpu"
|
| 12 |
+
processor = AutoProcessor.from_pretrained(model_name)
|
| 13 |
+
model = AutoModelForSpeechSeq2Seq.from_pretrained(model_name).to(device)
|
| 14 |
+
print(f"Modèle chargé avec succès sur {device}")
|
| 15 |
except Exception as e:
|
| 16 |
print(f"Erreur lors du chargement du modèle: {e}")
|
| 17 |
+
processor = None
|
| 18 |
+
model = None
|
| 19 |
|
| 20 |
def transcribe_audio(audio):
|
| 21 |
"""
|
| 22 |
Fonction pour transcrire l'audio en texte
|
| 23 |
"""
|
| 24 |
+
if model is None or processor is None:
|
| 25 |
return "Erreur: Le modèle n'a pas pu être chargé."
|
| 26 |
|
| 27 |
try:
|
| 28 |
+
device = "cuda" if torch.cuda.is_available() else "cpu"
|
| 29 |
+
|
| 30 |
+
# Charger l'audio
|
| 31 |
+
waveform, sample_rate = torchaudio.load(audio)
|
| 32 |
+
|
| 33 |
+
# Préparer l'input
|
| 34 |
+
inputs = processor(waveform.squeeze().numpy(), sampling_rate=sample_rate, return_tensors="pt").to(device)
|
| 35 |
+
|
| 36 |
+
# Générer la transcription
|
| 37 |
+
with torch.no_grad():
|
| 38 |
+
generated_ids = model.generate(**inputs)
|
| 39 |
+
|
| 40 |
+
# Décoder le résultat
|
| 41 |
+
transcription = processor.batch_decode(generated_ids, skip_special_tokens=True)[0]
|
| 42 |
+
return transcription
|
| 43 |
except Exception as e:
|
| 44 |
return f"Erreur lors de la transcription: {str(e)}"
|
| 45 |
|