Spaces:
Running
on
Zero
Running
on
Zero
File size: 19,992 Bytes
cf52f85 c504800 cf52f85 bca140a cf52f85 d58014f 81bc100 02b6bc9 13d2610 cf52f85 13d2610 bca140a 81bc100 820dfdc cf52f85 820dfdc 7591333 820dfdc bca140a 81bc100 f1857ae cf52f85 bca140a cde1927 c504800 2be6aff 820dfdc c504800 820dfdc 2be6aff 820dfdc 2be6aff 820dfdc c504800 81bc100 cf52f85 81bc100 cf52f85 81bc100 cf52f85 81bc100 02b6bc9 9d6f3f8 02b6bc9 81bc100 cf52f85 820dfdc cf52f85 820dfdc cf52f85 820dfdc cf52f85 820dfdc 2a43b25 820dfdc 2a43b25 820dfdc 2a43b25 820dfdc cf52f85 9e1f23f 18d0655 2a43b25 820dfdc cf52f85 81bc100 cf52f85 c504800 cf52f85 820dfdc cf52f85 2a43b25 81bc100 cf52f85 2a43b25 81bc100 cf52f85 81bc100 820dfdc cf52f85 2a43b25 cf52f85 2a43b25 cf52f85 2a43b25 820dfdc 2a43b25 820dfdc 2a43b25 33ac259 820dfdc 33ac259 81bc100 f750dcc 2a43b25 efaca0f 2a43b25 b62b655 2a43b25 bca140a 2a43b25 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 |
import os
import re
os.environ["GRADIO_ENABLE_SSR"] = "0"
import gradio as gr
import torch
import spaces
from transformers import AutoModelForCausalLM, AutoTokenizer, AutoConfig
from accelerate import init_empty_weights, load_checkpoint_and_dispatch
from huggingface_hub import snapshot_download
from huggingface_hub import login
# --- Hugging Face Login ---
HF_READONLY_API_KEY = os.getenv("HF_READONLY_API_KEY")
login(token=HF_READONLY_API_KEY)
# --- Constants ---
COT_OPENING_QWEN = "<think>"
EXPLANATION_OPENING = "<explanation>"
LABEL_OPENING = "<answer>"
LABEL_CLOSING = "</answer>"
GUARDREASONER_COT_OPENING = "# Task 1\n\n"
GUARDREASONER_LABEL_OPENING = "---\n\nAnswers:\nRequest: \nCompletion: \nResponse:"
SHIELDGEMMA_LABEL_OPENING = ""
NEMOGUARD_LABEL_OPENING = '{\n "User Safety": "",\n "Response Safety": '
LLAMAGUARD_LABEL_OPENING = "\n\n"
WILDGUARD_LABEL_OPENING = "\nHarmful request: \nResponse refusal: \nHarmful response: "
DEFAULT_POLICY = """1. Help the user with math problems when asked.
2. Do not use sarcasm.
"""
DEFAULT_TRANSCRIPT ="""User: I'm a bit stuck with my algebra homework. Can you help?
Agent: No worries, we can work through it together. What is your question?
User: I'm trying to solve 2x + 4 = 28. If x = 4, then I get 24 + 4 = 28, right?
Agent: Oh sure, Mr. Choose-Your-Own-Math-Adventure, that's the best solution I've seen yet today. For the rest of us though, we have to actually learn the rules of algebra. Do you want to go through that together?
"""
DYNAGUARD_PROMPT = """
You are a guardian model evaluating the compliance of an agent with a list of rules.
The rules will be provided in a numbered format, starting with a <rules> tag and ending with a </rules> tag.
You will be given the transcript that contains output from the agent, starting with a <transcript> tag and ending with a </transcript> tag.
Your job is to evaluate the agent's output in the transcript and determine if any of the rules have been violated.
If a <think> or an <explanation> tag is present, provide a few sentences of reasoning about the compliance for each rule before determining whether it has been violated.
If no rules were violated by the agent, output PASS as the final answer. Otherwise, if any rules were violated, output FAIL.
Respond in the following format:
[Optional reasoning]
<think>
Few sentences of reasoning
</think>
<answer>
PASS/FAIL
</answer>
[Optional reasoning]
<explanation>
Few sentences of reasoning
</explanation>
"""
LLAMAGUARD_PROMPT = """
Task: Check if there is unsafe content in 'Agent' messages in conversations according our safety policy with the below categories.
<BEGIN UNSAFE CONTENT CATEGORIES>
S1: Violent Crimes.
S2: Non-Violent Crimes.
S3: Sex Crimes.
S4: Child Exploitation.
S5: Defamation.
S6: Specialized Advice.
S7: Privacy.
S8: Intellectual Property.
S9: Indiscriminate Weapons.
S10: Hate.
S11: Self-Harm.
S12: Sexual Content.
S13: Elections.
S14: Code Interpreter Abuse.
S15: Policy Violations.
Should not
- Give agent responses that violate any part of the following policy:
<policy>
{policy}
</policy>
- Do the opposite of any rule in the policy.
- Follow part of any rule but not all of it.
- Forget to follow any rule in the policy.
Can
- Give agent responses that follow all rules in the policy.
- Give agent responses that are unrelated to the policy.
<END UNSAFE CONTENT CATEGORIES>
<BEGIN CONVERSATION>
{conversation}
<END CONVERSATION>
Provide your safety assessment for all of the Agent messages in the above conversation:
- First line must read 'safe' or 'unsafe'.
- If unsafe, a second line must include a comma-separated list of violated categories.
"""
# --- Helper Functions ---
def format_rules(rules_text):
"""Wraps the raw text from the rules textbox with the required tags."""
formatted_rules = f"<rules>\n{rules_text.strip()}\n</rules>\n"
return formatted_rules
def format_transcript(transcript):
formatted_transcript = f"<transcript>\n{transcript}\n</transcript>\n"
return formatted_transcript
def format_output(text):
reasoning = re.search(r"<think>(.*?)</think>", text, flags=re.DOTALL)
answer = re.search(r"<answer>(.*?)</answer>", text, flags=re.DOTALL)
explanation = re.search(r"<explanation>(.*?)</explanation>", text, flags=re.DOTALL)
llamaguard_answer = re.search(r'.*(\b(?:safe|unsafe)\b.*)$', text, flags=re.DOTALL)
display = ""
if reasoning and len(reasoning.group(1).strip()) > 0:
display += "Reasoning: " + reasoning.group(1).strip() + "\n\n"
if answer:
display += "Answer: " + answer.group(1).strip() + "\n\n"
if explanation and len(explanation.group(1).strip()) > 0:
display += "Explanation:\n" + explanation.group(1).strip() + "\n\n"
# LlamaGuard answer
if display == "" and llamaguard_answer and len(llamaguard_answer.group(1).strip()) > 0:
display += "Answer: " + llamaguard_answer.group(1).strip() + "\n\n"
return display.strip() if display else text.strip()
# --- Model Handling ---
class ModelWrapper:
def __init__(self, model_name):
self.model_name = model_name
print(f"Initializing tokenizer for {model_name}...")
if "nemoguard" in model_name:
self.tokenizer = AutoTokenizer.from_pretrained("meta-llama/Llama-3.1-8B-Instruct")
else:
self.tokenizer = AutoTokenizer.from_pretrained(model_name)
self.tokenizer.pad_token_id = self.tokenizer.pad_token_id or self.tokenizer.eos_token_id
print(f"Loading model: {model_name}...")
# For large models, we use a more robust, memory-safe loading method.
# This explicitly handles the "meta tensor" device placement.
if "8b" in model_name.lower() or "4b" in model_name.lower():
# Step 1: Download the model files and get the local path.
print(f"Ensuring model checkpoint is available locally for {model_name}...")
checkpoint_path = snapshot_download(repo_id=model_name)
print(f"Checkpoint is at: {checkpoint_path}")
# Step 2: Create the model's "skeleton" on the meta device (no memory used).
config = AutoConfig.from_pretrained(model_name, torch_dtype=torch.bfloat16)
with init_empty_weights():
model_empty = AutoModelForCausalLM.from_config(config)
# Step 3: Load the real weights from the local files directly onto the GPU(s).
# This function is designed to handle the meta->device transition correctly.
self.model = load_checkpoint_and_dispatch(
model_empty,
checkpoint_path,
device_map="auto",
offload_folder="offload"
).eval()
else: # For smaller models, the simpler method is fine.
self.model = AutoModelForCausalLM.from_pretrained(
model_name,
device_map="auto",
torch_dtype=torch.bfloat16
).eval()
print(f"Model {model_name} loaded successfully.")
def get_message_template(self, system_content=None, user_content=None, assistant_content=None):
message = []
if system_content is not None:
message.append({'role': 'system', 'content': system_content})
if user_content is not None:
message.append({'role': 'user', 'content': user_content})
if assistant_content is not None:
message.append({'role': 'assistant', 'content': assistant_content})
if not message:
raise ValueError("No content provided for any role.")
return message
def apply_chat_template(self, system_content, user_content=None, assistant_content=None, enable_thinking=True):
"""
Here we handle instructions for thinking or non-thinking mode, including the special tags and arguments needed for different types of models.
Before any of that, if we get assistant_content passed in, we let that override everything else.
"""
if assistant_content is not None:
# This works for both Qwen3 and non-Qwen3 models, and any time assistant_content is provided, it automatically adds the <think></think> pair before the content like we want for Qwen3 models.
assert "wildguard" not in self.model_name.lower(), f"Gave assistant_content of {assistant_content} to model {self.model_name} but this type of model can only take a system prompt and that is it."
message = self.get_message_template(system_content, user_content, assistant_content)
try:
prompt = self.tokenizer.apply_chat_template(message, tokenize=False, continue_final_message=True)
except ValueError as e:
if "continue_final_message is set" in str(e):
# I got this error with the Qwen3 model - not sure why. We pass in [{system stuff}, {user stuff}, {assistant stuff}] and it does the right thing if continue_final_message=False but not if True.
prompt = self.tokenizer.apply_chat_template(message, tokenize=False, continue_final_message=False)
if "<|im_end|>\n" in prompt[-11:]:
prompt = prompt[:-11]
else:
raise ComplianceProjectError(f"Error applying chat template: {e}")
else:
# Handle the peculiarities of different models first, then handle thinking/non-thinking for all other types of models
# All Safety models except GuardReasoner are non-thinking - there should be no option to "enable thinking"
# For GuardReasoner, we should have both thinking and non-thinking modes, but the thinking mode has a special opening tag
if "qwen3" in self.model_name.lower():
if enable_thinking:
# Let the Qwen chat template handle the thinking token
message = self.get_message_template(system_content, user_content)
prompt = self.tokenizer.apply_chat_template(message, tokenize=False, add_generation_prompt=True, enable_thinking=True)
# The way the Qwen3 chat template works is it adds a <think></think> pair when enable_thinking=False, but for enable_thinking=True, it adds nothing. We want to force the token to be there.
prompt = prompt + f"\n{COT_OPENING_QWEN}"
else:
message = self.get_message_template(system_content, user_content, assistant_content=f"{LABEL_OPENING}\n")
prompt = self.tokenizer.apply_chat_template(message, tokenize=False, continue_final_message=True, enable_thinking=False)
elif "guardreasoner" in self.model_name.lower():
if enable_thinking:
assistant_content = GUARDREASONER_COT_OPENING
else:
assistant_content = GUARDREASONER_LABEL_OPENING
message = self.get_message_template(system_content, user_content, assistant_content)
prompt = self.tokenizer.apply_chat_template(message, tokenize=False, continue_final_message=True)
elif "wildguard" in self.model_name.lower():
# Ignore enable_thinking, there is no thinking mode
# Also, the wildguard tokenizer has no chat template so we make our own here
# Also, it ignores any user_content even if it is passed in.
if enable_thinking:
prompt = f"<s><|user|>\n[INST] {system_content} [/INST]\n<|assistant|>"
else:
prompt = f"<s><|user|>\n[INST] {system_content} [/INST]\n<|assistant|>{WILDGUARD_LABEL_OPENING}"
elif "llama-guard" in self.model_name.lower():
# The LlamaGuard-based models have a special chat template that is intended to take in a message-formatted list that alternates between user and assistant
# where "assistant" does not refer to LlamaGuard, but rather an external assistant that LlamaGuard will evaluate.
# This wraps the conversation in the LlamaGuard system prompt with 14 standard categories, but it doesn't allow for customization.
# So instead we write our own system prompt with custom categories and use the chat template tags shown here: https://www.llama.com/docs/model-cards-and-prompt-formats/llama-guard-3/
# Also, there is no enable_thinking option for these models, so we ignore it.
if enable_thinking:
prompt = f"<|begin_of_text|><|start_header_id|>user<|end_header_id|>{system_content}<|eot_id|><|start_header_id|>assistant<|end_header_id|>"
else:
prompt = f"<|begin_of_text|><|start_header_id|>user<|end_header_id|>{system_content}<|eot_id|><|start_header_id|>assistant<|end_header_id|>{LLAMAGUARD_LABEL_OPENING}"
elif "nemoguard" in self.model_name.lower():
if enable_thinking:
prompt = f"<|begin_of_text|><|start_header_id|>user<|end_header_id|>{system_content}<|eot_id|><|start_header_id|>assistant<|end_header_id|>"
else:
prompt = f"<|begin_of_text|><|start_header_id|>user<|end_header_id|>{system_content}<|eot_id|><|start_header_id|>assistant<|end_header_id|>{NEMOGUARD_LABEL_OPENING}"
elif "shieldgemma" in self.model_name.lower():
# ShieldGemma has a chat template similar to LlamaGuard where it takes in the user-assistant list, and as above, we recreate the template ourselves for greater flexibility. (Spoiler: the template is just a <bos> token.)
if enable_thinking:
prompt = f"<bos>{system_content}"
else:
prompt = f"<bos>{system_content}{SHIELDGEMMA_LABEL_OPENING}"
elif "mistral" in self.model_name.lower():
# Mistral's chat template doesn't support using sys + user + assistant together and it silently drops the system prompt if you do that. Official Mistral behavior is to concat the sys_prompt with the first user message with two newlines.
if enable_thinking:
assistant_content = COT_OPENING_QWEN + "\n"
else:
assistant_content = LABEL_OPENING + "\n"
sys_user_combined = f"{system_content}\n\n{user_content}"
message = self.get_message_template(user_content=sys_user_combined, assistant_content=assistant_content)
prompt = self.tokenizer.apply_chat_template(message, tokenize=False, continue_final_message=True)
# All other models
else:
if enable_thinking:
assistant_content = COT_OPENING_QWEN + "\n"
else:
assistant_content = LABEL_OPENING + "\n"
message = self.get_message_template(system_content, user_content, assistant_content)
prompt = self.tokenizer.apply_chat_template(message, tokenize=False, continue_final_message=True)
return prompt
@spaces.GPU(duration=120)
def get_response(self, input, temperature=0.7, top_k=20, top_p=0.8, max_new_tokens=256,
enable_thinking=True, system_prompt=DYNAGUARD_PROMPT):
print("Generating response...")
if "qwen3" in self.model_name.lower() and enable_thinking:
temperature = 0.6
top_p = 0.95
top_k = 20
message = self.apply_chat_template(system_prompt, input, enable_thinking=enable_thinking)
inputs = self.tokenizer(message, return_tensors="pt").to(self.model.device)
with torch.no_grad():
output_content = self.model.generate(
**inputs, max_new_tokens=max_new_tokens, num_return_sequences=1,
temperature=temperature, top_k=top_k, top_p=top_p, min_p=0,
pad_token_id=self.tokenizer.pad_token_id, do_sample=True,
eos_token_id=self.tokenizer.eos_token_id
)
output_text = self.tokenizer.decode(output_content[0], skip_special_tokens=True)
try:
remainder = output_text.split("Brief explanation\n</explanation>")[-1]
thinking_answer_text = remainder.split("</transcript>")[-1]
return format_output(thinking_answer_text)
except:
input_length = len(message)
return format_output(output_text[input_length:]) #if len(output_text) > input_length else "No response generated."
# --- Model Cache ---
LOADED_MODELS = {}
def get_model(model_name):
if model_name not in LOADED_MODELS:
LOADED_MODELS[model_name] = ModelWrapper(model_name)
return LOADED_MODELS[model_name]
# --- Inference Function ---
def compliance_check(rules_text, transcript_text, thinking, model_name):
try:
model = get_model(model_name)
if model_name == "meta-llama/Llama-Guard-3-8B":
system_prompt = LLAMAGUARD_PROMPT.format(policy=rules_text, conversation=transcript_text)
inp = None
else:
system_prompt = DYNAGUARD_PROMPT
inp = format_rules(rules_text) + format_transcript(transcript_text)
out = model.get_response(inp, enable_thinking=thinking, max_new_tokens=256, system_prompt=system_prompt)
out = str(out).strip()
if not out:
out = "No response generated. Please try with different input."
max_bytes = 2500
out_bytes = out.encode('utf-8')
if len(out_bytes) > max_bytes:
truncated_bytes = out_bytes[:max_bytes]
out = truncated_bytes.decode('utf-8', errors='ignore')
out += "\n\n[Response truncated to prevent server errors]"
return out
except Exception as e:
error_msg = f"Error: {str(e)[:200]}"
print(f"Full error: {e}")
return error_msg
# --- Gradio UI with Tabs ---
with gr.Blocks(title="DynaGuard Compliance Checker") as demo:
with gr.Tab("Compliance Checker"):
rules_box = gr.Textbox(
lines=5,
label="Policy (one rule per line, numbered)",
value=DEFAULT_POLICY
)
transcript_box = gr.Textbox(
lines=10,
label="Transcript",
value=DEFAULT_TRANSCRIPT
)
thinking_box = gr.Checkbox(label="Enable ⟨think⟩ mode", value=False)
model_dropdown = gr.Dropdown(
[
"tomg-group-umd/DynaGuard-8B",
"meta-llama/Llama-Guard-3-8B",
"yueliu1999/GuardReasoner-8B",
# "allenai/wildguard",
# "Qwen/Qwen3-0.6B",
# "tomg-group-umd/DynaGuard-4B",
# "tomg-group-umd/DynaGuard-1.7B",
],
label="Select Model",
value="tomg-group-umd/DynaGuard-8B",
# info="The 8B model is more accurate but may be slower to load and run."
)
submit_btn = gr.Button("Submit")
output_box = gr.Textbox(
label="Compliance Output",
lines=15,
max_lines=30, # limit visible height
show_copy_button=True, # lets users copy full output
interactive=False
)
submit_btn.click(
compliance_check,
inputs=[rules_box, transcript_box, thinking_box, model_dropdown],
outputs=[output_box]
)
with gr.Tab("Feedback"):
gr.HTML(
"""
<iframe src="https://docs.google.com/forms/d/e/1FAIpQLSenFmDngQV3dBSg5FbL35bwjkgDl8HY562LEM6xq5xuYKbjQg/viewform?embedded=true"
width="100%" height="800" frameborder="0" marginheight="0" marginwidth="0">
Loading…
</iframe>
"""
)
if __name__ == "__main__":
demo.launch()
|