File size: 34,847 Bytes
e0b7cb2
a94e7bc
e0b7cb2
 
 
a94e7bc
e0b7cb2
 
 
a94e7bc
 
e0b7cb2
a94e7bc
 
83ae456
 
 
 
 
 
 
a94e7bc
83ae456
 
 
 
 
 
 
 
 
a94e7bc
 
 
 
 
 
 
83ae456
a94e7bc
83ae456
a94e7bc
 
83ae456
a94e7bc
 
 
d4fd20c
a94e7bc
 
d4fd20c
a94e7bc
 
d4fd20c
e0b7cb2
 
a94e7bc
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e0b7cb2
 
 
a94e7bc
 
 
 
 
 
 
 
 
 
 
e0b7cb2
a94e7bc
 
 
 
 
 
 
 
e0b7cb2
a94e7bc
 
 
 
 
 
 
 
e0b7cb2
 
a94e7bc
 
 
 
 
 
 
 
 
e0b7cb2
a94e7bc
 
 
e0b7cb2
 
 
 
a94e7bc
 
 
 
 
 
 
 
 
 
e0b7cb2
 
 
a94e7bc
 
 
 
 
 
 
 
 
e0b7cb2
 
 
a94e7bc
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e0b7cb2
a94e7bc
 
e0b7cb2
 
 
a94e7bc
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e0b7cb2
a94e7bc
 
e0b7cb2
a94e7bc
e0b7cb2
a94e7bc
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e0b7cb2
a94e7bc
e0b7cb2
a94e7bc
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e0b7cb2
 
 
 
a94e7bc
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e0b7cb2
a94e7bc
 
 
e0b7cb2
 
 
 
 
a94e7bc
 
 
 
 
 
 
 
 
e0b7cb2
a94e7bc
 
e0b7cb2
 
 
 
 
a94e7bc
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e0b7cb2
 
83ae456
a94e7bc
 
83ae456
 
e0b7cb2
 
 
a94e7bc
e0b7cb2
 
a94e7bc
 
e0b7cb2
 
 
a94e7bc
 
 
 
e0b7cb2
a94e7bc
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e0b7cb2
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
<!DOCTYPE html>
<html lang="en">
<head>
    <meta charset="UTF-8">
    <meta name="viewport" content="width=device-width, initial-scale=1.0">
    <title>ImageNet Classification with Deep CNN</title>
    <script src="https://cdn.tailwindcss.com"></script>
    <link rel="stylesheet" href="https://cdnjs.cloudflare.com/ajax/libs/font-awesome/6.4.0/css/all.min.css">
    <style>
        .gradient-bg {
            background: linear-gradient(135deg, #f5f7fa 0%, #c3cfe2 100%);
        }
        .paper-shadow {
            box-shadow: 0 10px 30px -15px rgba(0,0,0,0.2);
        }
        .nav-indicator {
            position: relative;
        }
        .nav-indicator::after {
            content: '';
            position: absolute;
            bottom: -2px;
            left: 0;
            width: 0;
            height: 2px;
            background-color: #3b82f6;
            transition: width 0.3s ease;
        }
        .nav-indicator.active::after {
            width: 100%;
        }
        .citation-card {
            transition: all 0.3s ease;
        }
        .citation-card:hover {
            transform: translateY(-5px);
            box-shadow: 0 15px 30px -10px rgba(0,0,0,0.15);
        }
        .back-to-top {
            transition: all 0.3s ease;
        }
        .fade-in {
            animation: fadeIn 0.5s ease-in;
        }
        @keyframes fadeIn {
            from { opacity: 0; }
            to { opacity: 1; }
        }
        .language-option {
            transition: all 0.2s ease;
        }
        .language-option:hover {
            transform: translateX(5px);
        }
    </style>
</head>
<body class="gradient-bg min-h-screen">
    <div class="container mx-auto px-4 py-8 max-w-7xl">
        <!-- Header with Language Selector -->
        <header class="mb-12">
            <div class="flex justify-between items-center mb-8">
                <div class="text-sm text-gray-600">
                    <span class="font-semibold" id="conference">Neural Information Processing Systems</span>
                    <span class="mx-2"></span>
                    <span id="volume">Volume 25, 2012</span>
                </div>
                
                <div class="relative group">
                    <button id="languageBtn" class="flex items-center space-x-2 bg-white px-4 py-2 rounded-lg shadow-sm hover:shadow-md transition-all">
                        <i class="fas fa-globe text-blue-600"></i>
                        <span id="currentLanguage" class="font-medium">English</span>
                        <i class="fas fa-chevron-down text-xs text-gray-500"></i>
                    </button>
                    <div id="languageDropdown" class="hidden absolute right-0 mt-2 w-40 bg-white rounded-lg shadow-lg z-20 border border-gray-100">
                        <button class="w-full text-left px-4 py-2 hover:bg-blue-50 rounded-t-lg flex items-center language-option" data-lang="en">
                            <span class="w-6">🇬🇧</span>
                            <span>English</span>
                        </button>
                        <button class="w-full text-left px-4 py-2 hover:bg-blue-50 flex items-center language-option" data-lang="zh">
                            <span class="w-6">🇨🇳</span>
                            <span>中文</span>
                        </button>
                    </div>
                </div>
            </div>

            <h1 id="title" class="text-4xl md:text-5xl font-bold text-gray-900 mb-6 leading-tight">ImageNet Classification with Deep Convolutional Neural Networks</h1>
            
            <div class="flex flex-wrap justify-center gap-6 mb-8">
                <div class="flex items-center space-x-3 bg-white/80 backdrop-blur-sm px-4 py-3 rounded-lg shadow-sm">
                    <div class="w-10 h-10 rounded-full bg-blue-100 flex items-center justify-center text-blue-600">
                        <i class="fas fa-user"></i>
                    </div>
                    <div>
                        <p id="author1" class="font-semibold">Alex Krizhevsky</p>
                        <p class="text-sm text-gray-600" id="university1">University of Toronto</p>
                    </div>
                </div>
                <div class="flex items-center space-x-3 bg-white/80 backdrop-blur-sm px-4 py-3 rounded-lg shadow-sm">
                    <div class="w-10 h-10 rounded-full bg-blue-100 flex items-center justify-center text-blue-600">
                        <i class="fas fa-user"></i>
                    </div>
                    <div>
                        <p id="author2" class="font-semibold">Ilya Sutskever</p>
                        <p class="text-sm text-gray-600" id="university2">University of Toronto</p>
                    </div>
                </div>
                <div class="flex items-center space-x-3 bg-white/80 backdrop-blur-sm px-4 py-3 rounded-lg shadow-sm">
                    <div class="w-10 h-10 rounded-full bg-blue-100 flex items-center justify-center text-blue-600">
                        <i class="fas fa-user"></i>
                    </div>
                    <div>
                        <p id="author3" class="font-semibold">Geoffrey Hinton</p>
                        <p class="text-sm text-gray-600" id="university3">University of Toronto</p>
                    </div>
                </div>
            </div>

            <div class="flex flex-wrap justify-center gap-4">
                <button class="pdf-btn px-6 py-3 bg-blue-600 text-white rounded-lg hover:bg-blue-700 transition-all flex items-center shadow-md hover:shadow-lg">
                    <i class="fas fa-file-pdf mr-3"></i>
                    <span id="downloadPdf">Download PDF</span>
                </button>
                <button class="cite-btn px-6 py-3 bg-white text-gray-800 rounded-lg hover:bg-gray-100 transition-all flex items-center shadow-md hover:shadow-lg border border-gray-200">
                    <i class="fas fa-quote-right mr-3"></i>
                    <span id="citePaper">Cite This Paper</span>
                </button>
                <button class="share-btn px-6 py-3 bg-white text-gray-800 rounded-lg hover:bg-gray-100 transition-all flex items-center shadow-md hover:shadow-lg border border-gray-200">
                    <i class="fas fa-share-alt mr-3"></i>
                    <span id="sharePaper">Share</span>
                </button>
            </div>
        </header>

        <!-- Navigation -->
        <nav class="sticky top-0 z-10 bg-white/80 backdrop-blur-sm rounded-xl shadow-sm mb-12 p-4 border border-gray-100">
            <ul class="flex flex-wrap justify-center gap-2 md:gap-6">
                <li><button class="nav-btn nav-indicator px-4 py-2 rounded-lg hover:bg-blue-50 transition-all font-medium text-gray-700" data-section="abstract"><span id="navAbstract">Abstract</span></button></li>
                <li><button class="nav-btn nav-indicator px-4 py-2 rounded-lg hover:bg-blue-50 transition-all font-medium text-gray-700" data-section="introduction"><span id="navIntro">Introduction</span></button></li>
                <li><button class="nav-btn nav-indicator px-4 py-2 rounded-lg hover:bg-blue-50 transition-all font-medium text-gray-700" data-section="dataset"><span id="navDataset">Dataset</span></button></li>
                <li><button class="nav-btn nav-indicator px-4 py-2 rounded-lg hover:bg-blue-50 transition-all font-medium text-gray-700" data-section="architecture"><span id="navArch">Architecture</span></button></li>
                <li><button class="nav-btn nav-indicator px-4 py-2 rounded-lg hover:bg-blue-50 transition-all font-medium text-gray-700" data-section="overfitting"><span id="navOverfit">Overfitting</span></button></li>
                <li><button class="nav-btn nav-indicator px-4 py-2 rounded-lg hover:bg-blue-50 transition-all font-medium text-gray-700" data-section="results"><span id="navResults">Results</span></button></li>
                <li><button class="nav-btn nav-indicator px-4 py-2 rounded-lg hover:bg-blue-50 transition-all font-medium text-gray-700" data-section="references"><span id="navRefs">References</span></button></li>
            </ul>
        </nav>

        <!-- Main Content -->
        <main class="bg-white rounded-2xl paper-shadow p-6 md:p-10 mb-12">
            <!-- Abstract Section -->
            <section id="abstract" class="section mb-16 fade-in">
                <h2 class="text-3xl font-bold mb-6 text-gray-800 border-b pb-3" id="abstractTitle">Abstract</h2>
                <div class="space-y-4 text-gray-700 leading-relaxed">
                    <p id="abstract1">We trained a large, deep convolutional neural network to classify the 1.2 million high-resolution images in the ImageNet LSVRC-2010 contest into the 1000 different classes. On the test data, we achieved top-1 and top-5 error rates of 37.5% and 17.0% which is considerably better than the previous state-of-the-art.</p>
                    <p id="abstract2">The neural network, which has 60 million parameters and 650,000 neurons, consists of five convolutional layers, some of which are followed by max-pooling layers, and three fully-connected layers with a final 1000-way softmax. To make training faster, we used non-saturating neurons and a very efficient GPU implementation of the convolution operation. To reduce overfitting in the fully-connected layers we employed a recently-developed regularization method called "dropout" that proved to be very effective.</p>
                    <p id="abstract3">We also entered a variant of this model in the ILSVRC-2012 competition and achieved a top-5 test error rate of 15.3%, compared to 26.2% achieved by the second-best entry.</p>
                </div>
            </section>

            <!-- Introduction Section -->
            <section id="introduction" class="section mb-16 fade-in">
                <h2 class="text-3xl font-bold mb-6 text-gray-800 border-b pb-3" id="introTitle">1. Introduction</h2>
                <div class="space-y-6 text-gray-700 leading-relaxed">
                    <p id="intro1">Current approaches to object recognition make essential use of machine learning methods. To improve their performance, we can collect larger datasets, learn more powerful models, and use better techniques for preventing overfitting. Until recently, datasets of labeled images were relatively small — on the order of tens of thousands of images (e.g., NORB [16], Caltech-101/256 [8, 9], and CIFAR-10/100 [12]).</p>
                    <p id="intro2">Simple recognition tasks can be solved quite well with datasets of this size, especially if they are augmented with label-preserving transformations. For example, the current best error rate on the MNIST digit-recognition task (<0.3%) approaches human performance [4]. But objects in realistic settings exhibit considerable variability, so to learn to recognize them it is necessary to use much larger training sets.</p>
                    
                    <div class="bg-blue-50/50 border-l-4 border-blue-500 p-6 rounded-lg my-6">
                        <h3 class="text-xl font-semibold mb-3 text-blue-800" id="keyContribTitle">Key Contributions:</h3>
                        <ul class="list-disc pl-5 space-y-2 text-blue-900/90">
                            <li id="contrib1">We trained one of the largest convolutional neural networks to date on the subsets of ImageNet</li>
                            <li id="contrib2">We achieved the best results reported on these datasets</li>
                            <li id="contrib3">We wrote a highly-optimized GPU implementation of 2D convolution</li>
                            <li id="contrib4">Our network contains several new and unusual features that improve performance</li>
                        </ul>
                    </div>
                    
                    <p id="intro3">And indeed, the shortcomings of small image datasets have been widely recognized (e.g., Pinto et al. [21]), but it has only recently become possible to collect labeled datasets with millions of images. The new larger datasets include LabelMe [23], which consists of hundreds of thousands of fully-segmented images, and ImageNet [6], which consists of over 15 million labeled high-resolution images in over 22,000 categories.</p>
                </div>
            </section>

            <!-- Dataset Section -->
            <section id="dataset" class="section mb-16 fade-in">
                <h2 class="text-3xl font-bold mb-6 text-gray-800 border-b pb-3" id="datasetTitle">2. Dataset</h2>
                <div class="space-y-6 text-gray-700 leading-relaxed">
                    <p id="dataset1">ImageNet is a dataset of over 15 million labeled high-resolution images belonging to roughly 22,000 categories. The images were collected from the web and labeled by human labelers using Amazon's Mechanical Turk crowd-sourcing tool.</p>
                    <p id="dataset2">Starting in 2010, as part of the Pascal Visual Object Challenge, an annual competition called the ImageNet Large-Scale Visual Recognition Challenge (ILSVRC) has been held. ILSVRC uses a subset of ImageNet with roughly 1000 images in each of 1000 categories. In all, there are roughly:</p>
                    
                    <div class="grid grid-cols-1 md:grid-cols-3 gap-6 my-8">
                        <div class="bg-gradient-to-br from-blue-50 to-blue-100 p-6 rounded-xl text-center border border-blue-100">
                            <p class="text-4xl font-bold text-blue-700 mb-2">1.2M</p>
                            <p class="text-gray-700 font-medium" id="trainImages">Training Images</p>
                        </div>
                        <div class="bg-gradient-to-br from-blue-50 to-blue-100 p-6 rounded-xl text-center border border-blue-100">
                            <p class="text-4xl font-bold text-blue-700 mb-2">50K</p>
                            <p class="text-gray-700 font-medium" id="valImages">Validation Images</p>
                        </div>
                        <div class="bg-gradient-to-br from-blue-50 to-blue-100 p-6 rounded-xl text-center border border-blue-100">
                            <p class="text-4xl font-bold text-blue-700 mb-2">150K</p>
                            <p class="text-gray-700 font-medium" id="testImages">Test Images</p>
                        </div>
                    </div>
                    
                    <p id="dataset3">On ImageNet, it is customary to report two error rates: top-1 and top-5, where the top-5 error rate is the fraction of test images for which the correct label is not among the five labels considered most probable by the model.</p>
                </div>
            </section>

            <!-- Architecture Section -->
            <section id="architecture" class="section mb-16 fade-in">
                <h2 class="text-3xl font-bold mb-6 text-gray-800 border-b pb-3" id="archTitle">3. Architecture</h2>
                <div class="space-y-8 text-gray-700 leading-relaxed">
                    <p id="arch1">Our network architecture contains eight learned layers — five convolutional and three fully-connected. Below, we describe some of the novel or unusual features of our network's architecture.</p>
                    
                    <div>
                        <h3 class="text-2xl font-semibold mb-4 text-gray-800" id="reluTitle">3.1 ReLU Nonlinearity</h3>
                        <p id="relu1">The standard way to model a neuron's output f as a function of its input x is with f(x) = tanh(x) or f(x) = (1 + e⁻ˣ)⁻¹. In terms of training time with gradient descent, these saturating nonlinearities are much slower than the non-saturating nonlinearity f(x) = max(0,x). Following Nair and Hinton [20], we refer to neurons with this nonlinearity as Rectified Linear Units (ReLUs).</p>
                        
                        <div class="my-6 p-4 bg-gray-50 rounded-xl border border-gray-200">
                            <img src="https://paperswithcode.com/media/thumbnails/paper/2012/image-net-classification-with-deep-convolutional-neural-networks-1.jpg" alt="ReLU vs tanh performance" class="w-full rounded-lg">
                            <p class="text-sm text-gray-600 mt-2 text-center" id="fig1Caption">Figure 1: A four-layer convolutional neural network with ReLUs (solid line) reaches a 25% training error rate on CIFAR-10 six times faster than an equivalent network with tanh neurons (dashed line).</p>
                        </div>
                    </div>
                    
                    <div>
                        <h3 class="text-2xl font-semibold mb-4 text-gray-800" id="archOverviewTitle">3.5 Overall Architecture</h3>
                        <p id="archOverview1">The network contains eight layers with weights; the first five are convolutional and the remaining three are fully-connected. The output of the last fully-connected layer is fed to a 1000-way softmax which produces a distribution over the 1000 class labels.</p>
                        
                        <div class="my-6 p-4 bg-gray-50 rounded-xl border border-gray-200">
                            <img src="https://miro.medium.com/v2/resize:fit:1400/1*1TkRB2T0qm5Fv5vApTkpeA.png" alt="Network architecture" class="w-full rounded-lg">
                            <p class="text-sm text-gray-600 mt-2 text-center" id="fig2Caption">Figure 2: An illustration of the architecture of our CNN, explicitly showing the delineation of responsibilities between the two GPUs.</p>
                        </div>
                    </div>
                </div>
            </section>

            <!-- Overfitting Section -->
            <section id="overfitting" class="section mb-16 fade-in">
                <h2 class="text-3xl font-bold mb-6 text-gray-800 border-b pb-3" id="overfitTitle">4. Reducing Overfitting</h2>
                <div class="space-y-8 text-gray-700 leading-relaxed">
                    <p id="overfit1">Our neural network architecture has 60 million parameters. Although the 1000 classes of ILSVRC make each training example impose 10 bits of constraint on the mapping from image to label, this turns out to be insufficient to learn so many parameters without considerable overfitting. Below, we describe the two primary ways in which we combat overfitting.</p>
                    
                    <div class="bg-gradient-to-br from-purple-50 to-blue-50 p-6 rounded-xl border border-purple-100 my-6">
                        <h3 class="text-2xl font-semibold mb-4 text-gray-800" id="dataAugTitle">4.1 Data Augmentation</h3>
                        <p id="dataAug1">The easiest and most common method to reduce overfitting on image data is to artificially enlarge the dataset using label-preserving transformations. We employ two distinct forms of data augmentation:</p>
                        
                        <div class="grid grid-cols-1 md:grid-cols-2 gap-6 mt-4">
                            <div class="bg-white p-4 rounded-lg border border-gray-200">
                                <h4 class="font-semibold mb-2 text-blue-700" id="augMethod1">1. Image Translations and Reflections</h4>
                                <p class="text-gray-700" id="augMethod1Desc">We generate additional training examples by extracting random 224×224 patches (and their horizontal reflections) from the 256×256 images. This increases our training set size by 2048×.</p>
                            </div>
                            <div class="bg-white p-4 rounded-lg border border-gray-200">
                                <h4 class="font-semibold mb-2 text-blue-700" id="augMethod2">2. Altering RGB Intensities</h4>
                                <p class="text-gray-700" id="augMethod2Desc">We perform PCA on the set of RGB pixel values and add multiples of the principal components with magnitudes proportional to the corresponding eigenvalues.</p>
                            </div>
                        </div>
                    </div>
                    
                    <div class="bg-gradient-to-br from-green-50 to-blue-50 p-6 rounded-xl border border-green-100 my-6">
                        <h3 class="text-2xl font-semibold mb-4 text-gray-800" id="dropoutTitle">4.2 Dropout</h3>
                        <p id="dropout1">The recently-introduced technique, called "dropout" [10], consists of setting to zero the output of each hidden neuron with probability 0.5. The neurons which are "dropped out" in this way do not contribute to the forward pass and do not participate in backpropagation.</p>
                        <p class="mt-4" id="dropout2">We use dropout in the first two fully-connected layers of our network. Without dropout, our network exhibits substantial overfitting. Dropout roughly doubles the number of iterations required to converge.</p>
                    </div>
                </div>
            </section>

            <!-- Results Section -->
            <section id="results" class="section mb-16 fade-in">
                <h2 class="text-3xl font-bold mb-6 text-gray-800 border-b pb-3" id="resultsTitle">6. Results</h2>
                <div class="space-y-6 text-gray-700 leading-relaxed">
                    <p id="results1">Our results on ILSVRC-2010 are summarized in Table 1. Our network achieves top-1 and top-5 test set error rates of 37.5% and 17.0%. The best performance achieved during the ILSVRC-2010 competition was 47.1% and 28.2% with an approach that averages the predictions produced from six sparse-coding models trained on different features [2].</p>
                    
                    <div class="overflow-x-auto my-6">
                        <table class="min-w-full border border-gray-200 rounded-lg overflow-hidden">
                            <thead class="bg-gray-100">
                                <tr>
                                    <th class="px-6 py-3 text-left text-xs font-medium text-gray-700 uppercase tracking-wider" id="tableModel">Model</th>
                                    <th class="px-6 py-3 text-left text-xs font-medium text-gray-700 uppercase tracking-wider" id="tableTop1">Top-1 Error</th>
                                    <th class="px-6 py-3 text-left text-xs font-medium text-gray-700 uppercase tracking-wider" id="tableTop5">Top-5 Error</th>
                                </tr>
                            </thead>
                            <tbody class="bg-white divide-y divide-gray-200">
                                <tr>
                                    <td class="px-6 py-4 whitespace-nowrap text-sm text-gray-700" id="model1">Sparse Coding [2]</td>
                                    <td class="px-6 py-4 whitespace-nowrap text-sm text-gray-700">47.1%</td>
                                    <td class="px-6 py-4 whitespace-nowrap text-sm text-gray-700">28.2%</td>
                                </tr>
                                <tr class="bg-gray-50">
                                    <td class="px-6 py-4 whitespace-nowrap text-sm text-gray-700" id="model2">SIFT + FVs [24]</td>
                                    <td class="px-6 py-4 whitespace-nowrap text-sm text-gray-700">45.7%</td>
                                    <td class="px-6 py-4 whitespace-nowrap text-sm text-gray-700">25.7%</td>
                                </tr>
                                <tr class="bg-blue-50">
                                    <td class="px-6 py-4 whitespace-nowrap text-sm font-semibold text-gray-900" id="model3">CNN (Our Model)</td>
                                    <td class="px-6 py-4 whitespace-nowrap text-sm font-semibold text-gray-900">37.5%</td>
                                    <td class="px-6 py-4 whitespace-nowrap text-sm font-semibold text-gray-900">17.0%</td>
                                </tr>
                            </tbody>
                        </table>
                        <p class="text-sm text-gray-600 mt-2 text-center" id="tableCaption">Table 1: Comparison of results on ILSVRC-2010 test set.</p>
                    </div>
                    
                    <p id="results2">We also entered a variant of this model in the ILSVRC-2012 competition and achieved a top-5 test error rate of 15.3%, compared to 26.2% achieved by the second-best entry.</p>
                    
                    <div class="grid grid-cols-1 md:grid-cols-2 gap-6 mt-8">
                        <div class="bg-gray-50 p-4 rounded-xl border border-gray-200">
                            <img src="https://production-media.paperswithcode.com/datasets/4ef7862e315766034c533cfa2473998dbd0f3ef1.jpg" alt="Network filters" class="w-full rounded-lg">
                            <p class="text-sm text-gray-600 mt-2 text-center" id="fig3Caption">Figure 3: 96 convolutional kernels of size 11×11×3 learned by the first convolutional layer.</p>
                        </div>
                        <div class="bg-gray-50 p-4 rounded-xl border border-gray-200">
                            <img src="https://production-media.paperswithcode.com/datasets/66491abbb6c923fad2c100a539ff8b47812a62b4.jpg" alt="Classification examples" class="w-full rounded-lg">
                            <p class="text-sm text-gray-600 mt-2 text-center" id="fig4Caption">Figure 4: (Left) Test images and top-5 predictions. (Right) Test images and similar training images based on feature activations.</p>
                        </div>
                    </div>
                </div>
            </section>

            <!-- References Section -->
            <section id="references" class="section fade-in">
                <h2 class="text-3xl font-bold mb-6 text-gray-800 border-b pb-3" id="refsTitle">References</h2>
                <div class="space-y-4 text-gray-700">
                    <div class="citation-card bg-white p-4 rounded-lg border border-gray-200 hover:border-blue-200">
                        <p class="font-medium" id="ref1">[1] Krizhevsky, A., Sutskever, I., & Hinton, G. E. (2012). ImageNet classification with deep convolutional neural networks. Advances in neural information processing systems, 25, 1097-1105.</p>
                    </div>
                    <div class="citation-card bg-white p-4 rounded-lg border border-gray-200 hover:border-blue-200">
                        <p class="font-medium" id="ref2">[2] Jarrett, K., Kavukcuoglu, K., Ranzato, M., & LeCun, Y. (2009). What is the best multi-stage architecture for object recognition? 2009 IEEE 12th international conference on computer vision (pp. 2146-2153). IEEE.</p>
                    </div>
                    <div class="citation-card bg-white p-4 rounded-lg border border-gray-200 hover:border-blue-200">
                        <p class="font-medium" id="ref3">[10] Hinton, G. E., Srivastava, N., Krizhevsky, A., Sutskever, I., & Salakhutdinov, R. R. (2012). Improving neural networks by preventing co-adaptation of feature detectors. arXiv preprint arXiv:1207.0580.</p>
                    </div>
                </div>
            </section>
        </main>

        <!-- Footer -->
        <footer class="bg-white/80 backdrop-blur-sm rounded-2xl paper-shadow p-6 md:p-8 text-center">
            <div class="mb-6">
                <h3 class="text-xl font-bold mb-4" id="footerTitle">Cite This Paper</h3>
                <div class="bg-gray-100 p-4 rounded-lg mb-4 text-left">
                    <p id="citationText" class="font-mono text-sm">Krizhevsky, A., Sutskever, I., & Hinton, G. E. (2012). ImageNet classification with deep convolutional neural networks. Advances in neural information processing systems, 25, 1097-1105.</p>
                </div>
                <button id="copyCitationBtn" class="px-6 py-3 bg-blue-600 text-white rounded-lg hover:bg-blue-700 transition-all flex items-center mx-auto shadow-md hover:shadow-lg">
                    <i class="fas fa-copy mr-3"></i>
                    <span id="copyText">Copy Citation</span>
                </button>
            </div>
            
            <div class="border-t border-gray-200 pt-6">
                <p id="footerText" class="text-gray-600">© 2012 Alex Krizhevsky, Ilya Sutskever, Geoffrey E. Hinton. All rights reserved.</p>
                <div class="flex justify-center space-x-6 mt-4">
                    <a href="#" class="text-gray-500 hover:text-blue-600"><i class="fab fa-github fa-lg"></i></a>
                    <a href="#" class="text-gray-500 hover:text-blue-600"><i class="fas fa-envelope fa-lg"></i></a>
                    <a href="#" class="text-gray-500 hover:text-blue-600"><i class="fas fa-share-alt fa-lg"></i></a>
                </div>
            </div>
        </footer>

        <!-- Back to Top Button -->
        <button id="backToTop" class="back-to-top fixed bottom-8 right-8 bg-blue-600 text-white p-4 rounded-full shadow-lg hover:bg-blue-700 opacity-0 invisible transition-all">
            <i class="fas fa-arrow-up"></i>
        </button>
    </div>

    <script>
        // Language translations
        const translations = {
            en: {
                conference: "Neural Information Processing Systems",
                volume: "Volume 25, 2012",
                title: "ImageNet Classification with Deep Convolutional Neural Networks",
                author1: "Alex Krizhevsky",
                author2: "Ilya Sutskever",
                author3: "Geoffrey Hinton",
                university1: "University of Toronto",
                university2: "University of Toronto",
                university3: "University of Toronto",
                downloadPdf: "Download PDF",
                citePaper: "Cite This Paper",
                sharePaper: "Share",
                navAbstract: "Abstract",
                navIntro: "Introduction",
                navDataset: "Dataset",
                navArch: "Architecture",
                navOverfit: "Overfitting",
                navResults: "Results",
                navRefs: "References",
                abstractTitle: "Abstract",
                abstract1: "We trained a large, deep convolutional neural network to classify the 1.2 million high-resolution images in the ImageNet LSVRC-2010 contest into the 1000 different classes. On the test data, we achieved top-1 and top-5 error rates of 37.5% and 17.0% which is considerably better than the previous state-of-the-art.",
                abstract2: "The neural network, which has 60 million parameters and 650,000 neurons, consists of five convolutional layers, some of which are followed by max-pooling layers, and three fully-connected layers with a final 1000-way softmax. To make training faster, we used non-saturating neurons and a very efficient GPU implementation of the convolution operation. To reduce overfitting in the fully-connected layers we employed a recently-developed regularization method called \"dropout\" that proved to be very effective.",
                abstract3: "We also entered a variant of this model in the ILSVRC-2012 competition and achieved a top-5 test error rate of 15.3%, compared to 26.2% achieved by the second-best entry.",
                introTitle: "1. Introduction",
                intro1: "Current approaches to object recognition make essential use of machine learning methods. To improve their performance, we can collect larger datasets, learn more powerful models, and use better techniques for preventing overfitting. Until recently, datasets of labeled images were relatively small — on the order of tens of thousands of images (e.g., NORB [16], Caltech-101/256 [8, 9], and CIFAR-10/100 [12]).",
                intro2: "Simple recognition tasks can be solved quite well with datasets of this size, especially if they are augmented with label-preserving transformations. For example, the current best error rate on the MNIST digit-recognition task (<0.3%) approaches human performance [4]. But objects in realistic settings exhibit considerable variability, so to learn to recognize them it is necessary to use much larger training sets.",
                keyContribTitle: "Key Contributions:",
                contrib1: "We trained one of the largest convolutional neural networks to date on the subsets of ImageNet",
                contrib2: "We achieved the best results reported on these datasets",
                contrib3: "We wrote a highly-optimized GPU implementation of 2D convolution",
                contrib4: "Our network contains several new and unusual features that improve performance",
                intro3: "And indeed, the shortcomings of small image datasets have been widely recognized (e.g., Pinto et al. [21]), but it has only recently become possible to collect labeled datasets with millions of images. The new larger datasets include LabelMe [23], which consists of hundreds of thousands of fully-segmented images, and ImageNet [6], which consists of over 15 million labeled high-resolution images in over 22,000 categories.",
                datasetTitle: "2. Dataset",
                dataset1: "ImageNet is a dataset of over 15 million labeled high-resolution images belonging to roughly 22,000 categories. The images were collected from the web and labeled by human labelers using Amazon's Mechanical Turk crowd-sourcing tool.",
                dataset2: "Starting in 2010, as part of the Pascal Visual Object Challenge, an annual competition called the ImageNet Large-Scale Visual Recognition Challenge (ILSVRC) has been held. ILSVRC uses a subset of ImageNet with roughly 1000 images in each of 1000 categories. In all, there are roughly:",
                trainImages: "Training Images",
                valImages: "Validation Images",
                testImages: "Test Images",
                dataset3: "On ImageNet, it is customary to report two error rates: top-1 and top-5, where the top-5 error rate is the fraction of test images for which the correct label is not among the five labels considered most probable by the model.",
                archTitle: "3. Architecture",
                arch1: "Our network architecture contains eight learned layers — five convolutional and three fully-connected. Below, we describe some of the novel or unusual features of our network's architecture.",
                reluTitle: "3.1 ReLU Nonlinearity",
                relu1: "The standard way to model a neuron's output f as a function of its input x is with f(x) = tanh(x) or f(x) = (1 + e⁻ˣ)⁻¹. In terms of training time with gradient descent, these saturating nonlinearities are much slower than the non-saturating nonlinearity f(x) = max(0,x). Following Nair and Hinton [20], we refer to neurons with this nonlinearity as Rectified Linear Units (ReLUs
</html>