import dsp import dspy from dspy.teleprompt.teleprompt import Teleprompter from dspy.signatures import Signature from dspy.evaluate.evaluate import Evaluate from collections import defaultdict """ USAGE SUGGESTIONS: The following code can be used to compile a optimized signature teleprompter, and evaluate it on an end task: teleprompter = SignatureOptimizer(prompt_model=prompt_model, metric=metric, breadth=BREADTH, depth=DEPTH, init_temperature=INIT_TEMPERATURE) kwargs = dict(num_threads=NUM_THREADS, display_progress=True, display_table=0) compiled_prompt_opt = teleprompter.compile(program.deepcopy(), devset=devset[:DEV_NUM], eval_kwargs=kwargs) eval_score = evaluate(compiled_prompt_opt, devset=evalset[:EVAL_NUM], **kwargs) Note that this teleprompter takes in the following parameters: * prompt_model: The model used for prompt generation. When unspecified, defaults to the model set in settings (ie. dspy.settings.configure(lm=task_model)). * metric: The task metric used for optimization. * breadth: The number of new prompts to generate at each iteration. Default=10. * depth: The number of times we should ask our prompt model to generate new prompts, with the history of the past prompts as input. Default=3. * init_temperature: The temperature used to generate new prompts. Higher roughly equals more creative. Default=1.4. * verbose: Tells the method whether or not to print intermediate steps. * track_stats: Tells the method whether or not to track statistics about the optimization process. If True, the method will track the following statistics: * results_best: The min,max,avg,stddev of top 10 scores for each predictor at each depth. * results_latest: The min,max,avg,stddev of newest prompt scores for each predictor at each depth. * total_calls: The total number of calls to the task metric. These statistics will be returned as attributes of the best program. """ class BasicGenerateInstruction(Signature): """You are an instruction optimizer for large language models. I will give you a ``signature`` of fields (inputs and outputs) in English. Your task is to propose an instruction that will lead a good language model to perform the task well. Don't be afraid to be creative.""" basic_instruction = dspy.InputField(desc="The initial instructions before optimization") proposed_instruction = dspy.OutputField(desc="The improved instructions for the language model") proposed_prefix_for_output_field = dspy.OutputField(desc="The string at the end of the prompt, which will help the model start solving the task") class GenerateInstructionGivenAttempts(dspy.Signature): """You are an instruction optimizer for large language models. I will give some task instructions I've tried, along with their corresponding validation scores. The instructions are arranged in increasing order based on their scores, where higher scores indicate better quality. Your task is to propose a new instruction that will lead a good language model to perform the task even better. Don't be afraid to be creative.""" attempted_instructions = dspy.InputField(format=dsp.passages2text) proposed_instruction = dspy.OutputField(desc="The improved instructions for the language model") proposed_prefix_for_output_field = dspy.OutputField(desc="The string at the end of the prompt, which will help the model start solving the task") class SignatureOptimizer(Teleprompter): def __init__(self, prompt_model=None, metric=None, breadth=10, depth=3, init_temperature=1.4, verbose=False, track_stats=False): self.metric = metric self.breadth = breadth self.depth = depth self.init_temperature = init_temperature self.prompt_model = prompt_model self.verbose = verbose self.track_stats = track_stats def _check_candidates_equal(self, candidate1, candidate2): for p1, p2 in zip(candidate1["program"].predictors(), candidate2["program"].predictors()): if not p1.extended_signature.instructions == p2.extended_signature.instructions: return False if not p1.extended_signature.fields[-1] == p2.extended_signature.fields[-1]: return False return True def _drop_duplicates(self, candidates): final_candidates = [] last_batch = [] last_batch_score = -1 for c in candidates: repeat = False if c['score'] == last_batch_score: for c2 in last_batch: if (self._check_candidates_equal(c, c2)): repeat = True break if not repeat: last_batch.append(c) else: last_batch = [c] last_batch_score = c['score'] if not repeat: final_candidates.append(c) return final_candidates def compile(self, student, *, devset, eval_kwargs): """student is a program that needs to be optimized, note that it may be zero-shot or already pre-optimized for demos != []""" module = student.deepcopy() evaluate = Evaluate(devset=devset, metric=self.metric, **eval_kwargs) total_calls = 0 results_best = {id(p):{"depth": [], "max": [], "average": [], "min":[], "std": []} for p in module.predictors()} results_latest = {id(p):{"depth": [], "max": [], "average": [], "min":[], "std": []} for p in module.predictors()} if self.track_stats: import numpy as np candidates = {} evaluated_candidates = defaultdict(dict) # Seed the prompt optimizer zero shot with just the instruction, generate BREADTH new prompts for predictor in module.predictors(): basic_instruction = None basic_prefix = None if (hasattr(predictor, 'extended_signature')): basic_instruction = predictor.extended_signature.instructions basic_prefix = predictor.extended_signature.fields[-1].name else: basic_instruction = predictor.extended_signature1.instructions basic_prefix = predictor.extended_signature1.fields[-1].name if self.prompt_model: with dspy.settings.context(lm=self.prompt_model): instruct = dspy.Predict(BasicGenerateInstruction, n=self.breadth-1, temperature=self.init_temperature)(basic_instruction=basic_instruction) else: instruct = dspy.Predict(BasicGenerateInstruction, n=self.breadth-1, temperature=self.init_temperature)(basic_instruction=basic_instruction) # Add in our initial prompt as a candidate as well instruct.completions.proposed_instruction.append(basic_instruction) instruct.completions.proposed_prefix_for_output_field.append(basic_prefix) candidates[id(predictor)] = instruct.completions evaluated_candidates[id(predictor)] = {} if self.verbose and self.prompt_model: print(f"{self.prompt_model.inspect_history(n=1)}") latest_candidates = candidates all_candidates = candidates module_clone = module.deepcopy() # For each iteration in depth... for d in range(self.depth): # TODO: fix this so that we eval the new batch of predictors with the new best followoing predictors if self.verbose: print(f"Starting iteration {d}/{self.depth}.") latest_scores = [] # Go through our module's predictors for p_i, (p_old, p_new) in enumerate(zip(module.predictors(), module_clone.predictors())): candidates_ = latest_candidates[id(p_old)] # Use the most recently generated candidates for evaluation if len(module.predictors()) > 1: candidates_ = all_candidates[id(p_old)] # Unless our program has multiple predictors, in which case we need to reevaluate all prompts with the new prompt(s) for the other predictor(s) # For each candidate for c_i, c in enumerate(candidates_): # Get the candidate instruction and prefix instruction, prefix = c.proposed_instruction.strip('"').strip(), c.proposed_prefix_for_output_field.strip('"').strip() # Set this new module with our instruction / prefix if (hasattr(p_new, 'extended_signature')): p_new.extended_signature.instructions = instruction p_new.extended_signature.fields[-1] = p_new.extended_signature.fields[-1]._replace(name=prefix) else: p_new.extended_signature1.instructions = instruction p_new.extended_signature1.fields[-1] = p_new.extended_signature1.fields[-1]._replace(name=prefix) p_new.extended_signature2.instructions = instruction p_new.extended_signature2.fields[-1] = p_new.extended_signature2.fields[-1]._replace(name=prefix) # Score the instruction / prefix if self.verbose: print(f"----------------") for i,predictor in enumerate(module_clone.predictors()): if self.verbose: print(f"Predictor {i}") if (hasattr(predictor, 'extended_signature')): if self.verbose: print(f"i: {predictor.extended_signature.instructions}") if self.verbose: print(f"p: {predictor.extended_signature.fields[-1].name}") else: if self.verbose: print(f"i: {predictor.extended_signature1.instructions}") if self.verbose: print(f"p: {predictor.extended_signature1.fields[-1].name}") if self.verbose: print() if self.verbose: print(f"At Depth {d}/{self.depth}, Evaluating Prompt Candidate #{c_i}/{len(candidates_)} for Predictor {p_i} of {len(module.predictors())}.") score = evaluate(module_clone, devset=devset, **eval_kwargs) if self.verbose and self.prompt_model: print(f"prompt_model.inspect_history(n=1) {self.prompt_model.inspect_history(n=1)}") total_calls += 1 if self.verbose: print(f"----------------") replace_entry = True if self.verbose: print(f"(instruction, prefix) {(instruction, prefix)}") # if verbose: print(f"evaluated_candidates[id(p_old)] {evaluated_candidates[id(p_old)]}") if ((instruction, prefix) in evaluated_candidates[id(p_old)]): # if verbose: print(f"if evaluated_candidates[id(p_old)][(instruction, prefix)] {evaluated_candidates[id(p_old)][(instruction, prefix)]}") if evaluated_candidates[id(p_old)][(instruction, prefix)]["score"] >= score: replace_entry = False if replace_entry: # Add it to our evaluated candidates list evaluated_candidates[id(p_old)][(instruction, prefix)] = { "score": score, "program": module_clone.deepcopy(), "instruction": instruction, "prefix": prefix, "depth": d } if (len(candidates_)-self.breadth <= c_i): latest_scores.append(score) if self.track_stats: results_latest[id(p_old)]["depth"].append(d) results_latest[id(p_old)]["max"].append(max(latest_scores)) results_latest[id(p_old)]["average"].append(sum(latest_scores)/len(latest_scores)) results_latest[id(p_old)]["min"].append(min(latest_scores)) results_latest[id(p_old)]["std"].append(np.std(latest_scores)) # Now that we've evaluated the candidates, set this predictor to the best performing version # to ensure the next round of scores reflect the best possible version best_candidate = max(evaluated_candidates[id(p_old)].values(), key=lambda candidate: candidate['score']) if (hasattr(p_new, 'extended_signature')): p_new.extended_signature.instructions = best_candidate["instruction"] p_new.extended_signature.fields[-1] = p_new.extended_signature.fields[-1]._replace(name=best_candidate["prefix"]) else: p_new.extended_signature1.instructions = best_candidate["instruction"] p_new.extended_signature1.fields[-1] = p_new.extended_signature1.fields[-1]._replace(name=best_candidate["prefix"]) p_new.extended_signature2.instructions = best_candidate["instruction"] p_new.extended_signature2.fields[-1] = p_new.extended_signature2.fields[-1]._replace(name=best_candidate["prefix"]) if self.verbose: print(f"Updating Predictor {id(p_old)} to:\ni: {best_candidate['instruction']}\np: {best_candidate['prefix']}") if self.verbose: print(f"Full predictor with update: ") for i,predictor in enumerate(module_clone.predictors()): if self.verbose: print(f"Predictor {i}") if (hasattr(predictor, 'extended_signature')): if self.verbose: print(f"i: {predictor.extended_signature.instructions}") if self.verbose: print(f"p: {predictor.extended_signature.fields[-1].name}") else: if self.verbose: print(f"i: {predictor.extended_signature1.instructions}") if self.verbose: print(f"p: {predictor.extended_signature1.fields[-1].name}") if self.verbose: print() if d == self.depth-1: break new_candidates = {} for p_base in module.predictors(): # Build Few-Shot Example of Optimized Prompts attempts = [] shortest_len = self.breadth shortest_len = min(len(evaluated_candidates[id(p_base)]),shortest_len) best_predictors = list(evaluated_candidates[id(p_base)].values()) # best_predictors = evaluated_candidates[id(p_base)].values()[:] best_predictors.sort(key=lambda x: x['score'], reverse=True) if self.track_stats: scores = [x['score'] for x in best_predictors][:10] results_best[id(p_base)]["depth"].append(d) results_best[id(p_base)]["max"].append(max(scores)) results_best[id(p_base)]["average"].append(sum(scores)/len(scores)) results_best[id(p_base)]["min"].append(min(scores)) results_best[id(p_base)]["std"].append(np.std(scores)) for i in range(shortest_len-1,-1,-1): # breakpoint() attempts.append(f'Instruction #{shortest_len-i}: {best_predictors[i]["instruction"]}') attempts.append(f'Prefix #{shortest_len-i}: {best_predictors[i]["prefix"]}') attempts.append(f'Resulting Score #{shortest_len-i}: {best_predictors[i]["score"]}') # Generate next batch of potential prompts to optimize, with previous attempts as input if self.prompt_model: with dspy.settings.context(lm=self.prompt_model): instr = dspy.Predict(GenerateInstructionGivenAttempts, n=self.breadth, temperature=self.init_temperature)(attempted_instructions=attempts) else: instr = dspy.Predict(GenerateInstructionGivenAttempts, n=self.breadth, temperature=self.init_temperature)(attempted_instructions=attempts) if self.verbose and self.prompt_model: print(f"{self.prompt_model.inspect_history(n=1)}") # Get candidates for each predictor new_candidates[id(p_base)] = instr.completions all_candidates[id(p_base)].proposed_instruction.extend(instr.completions.proposed_instruction) all_candidates[id(p_base)].proposed_prefix_for_output_field.extend(instr.completions.proposed_prefix_for_output_field) if self.verbose and self.prompt_model: print(f"{self.prompt_model.inspect_history(n=1)}") latest_candidates = new_candidates candidates = [] for predictor in module.predictors(): candidates.extend(list(evaluated_candidates[id(predictor)].values())) if self.track_stats: best_predictors = list(evaluated_candidates[id(predictor)].values()) best_predictors.sort(key=lambda x: x['score'], reverse=True) scores = [x['score'] for x in best_predictors][:10] results_best[id(predictor)]["depth"].append(d) results_best[id(predictor)]["max"].append(max(scores)) results_best[id(predictor)]["average"].append(sum(scores)/len(scores)) results_best[id(predictor)]["min"].append(min(scores)) results_best[id(predictor)]["std"].append(np.std(scores)) # if verbose: print(f"candidates: {candidates}") candidates.sort(key=lambda x: x['score'], reverse=True) candidates = self._drop_duplicates(candidates) best_program = candidates[0]["program"] best_program.candidate_programs = candidates best_program.total_calls = total_calls if self.track_stats: best_program.results_best = results_best best_program.results_latest = results_latest return best_program