Spaces:
Running
Running
import spaces | |
from diffusers import AutoPipelineForInpainting, AutoencoderKL | |
import gradio as gr | |
from diffusers.utils import load_image | |
import torch | |
from PIL import Image | |
from SegBody import segment_body | |
from SegCloth import segment_clothing | |
vae = AutoencoderKL.from_pretrained("madebyollin/sdxl-vae-fp16-fix", torch_dtype=torch.float16) | |
pipeline = AutoPipelineForInpainting.from_pretrained(os.environ.get('MODEL'), vae=vae, torch_dtype=torch.float16, variant="fp16", use_safetensors=True).to("cuda") | |
pipeline.load_ip_adapter(os.environ.get('IP_ADAPTER'), subfolder="sdxl_models", weight_name="ip-adapter_sdxl.bin") | |
def squarify_image(img): | |
if(img.height > img.width): bg_size = img.height | |
else: bg_size = img.width | |
bg = Image.new(mode="RGB", size=(bg_size,bg_size), color="white") | |
bg.paste(img, ( int((bg.width - bg.width)/2), 0) ) | |
return bg | |
def divisible_by_8(image): | |
width, height = image.size | |
# Calculate the new width and height that are divisible by 8 | |
new_width = (width // 8) * 8 | |
new_height = (height // 8) * 8 | |
# Resize the image | |
resized_image = image.resize((new_width, new_height)) | |
return resized_image | |
def generate(person, clothing): | |
person.thumbnail((1024,1024)) | |
person = divisible_by_8(person) | |
clothing.thumbnail((1024,1024)) | |
clothing = divisible_by_8(clothing) | |
image = squarify_image(person) | |
seg_image, mask_image = segment_body(image, face=False) | |
seg_cloth = segment_clothing(clothing, clothes= ["Upper-clothes", "Skirt", "Pants", "Dress", "Belt"]) | |
#seg_cloth = clothing | |
pipeline.to("cuda") | |
pipeline.set_ip_adapter_scale(1.0) | |
images = pipeline( | |
prompt="photorealistic, perfect body, beautiful skin, realistic skin, natural skin", | |
negative_prompt="ugly, bad quality, bad anatomy, deformed body, deformed hands, deformed feet, deformed face, deformed clothing, deformed skin, bad skin, leggings, tights, stockings", | |
image=image, | |
mask_image=mask_image, | |
ip_adapter_image=seg_cloth, | |
width=image.width, | |
height=image.height, | |
strength=0.99, | |
guidance_scale=7.5, | |
num_inference_steps=100, | |
).images | |
final = images[0].crop((0, 0, person.width, person.height)) | |
return final | |
iface = gr.Interface(fn=generate, | |
inputs=[gr.Image(label='Person', type='pil'), gr.Image(label='Clothing', type='pil')], | |
outputs=[gr.Image(label='Result')], | |
title='Fashion Try-On', | |
description=""" | |
by [Tony Assi](https://www.tonyassi.com/) | |
Check out [Virtual Try-On Pro](https://huggingface.co/spaces/tonyassi/Virtual-Try-On-Pro) ! | |
Please β€οΈ this Space. I build custom AI apps for companies. <a href="mailto: tony.assi.media@gmail.com">Email me</a> for business inquiries. | |
""", | |
theme = gr.themes.Base(primary_hue="teal",secondary_hue="teal",neutral_hue="slate"), | |
examples=[["images/person1.jpg", "images/clothing1.jpg"], ["images/person1.jpg", "images/clothing2.jpg"]],) | |
iface.launch() |