import spaces from transformers import pipeline import numpy as np import cv2 import insightface from insightface.app import FaceAnalysis from PIL import Image, ImageDraw # Initialize face detection #app = FaceAnalysis(providers=['CUDAExecutionProvider', 'CPUExecutionProvider']) app = FaceAnalysis(providers=['CUDAExecutionProvider']) app.prepare(ctx_id=0, det_size=(640, 640)) # Initialize segmentation pipeline segmenter = pipeline(model="mattmdjaga/segformer_b2_clothes", device="cuda") @spaces.GPU(enable_queue=True) def remove_face(img, mask): # Convert image to numpy array img_arr = np.asarray(img) # Run face detection faces = app.get(img_arr) # Get the first face faces = faces[0]['bbox'] # Width and height of face w = faces[2] - faces[0] h = faces[3] - faces[1] # Make face locations bigger faces[0] = faces[0] - (w*0.5) # x left faces[2] = faces[2] + (w*0.5) # x right faces[1] = faces[1] - (h*0.5) # y top faces[3] = faces[3] + (h*0.2) # y bottom # Convert to [(x_left, y_top), (x_right, y_bottom)] face_locations = [(faces[0], faces[1]), (faces[2], faces[3])] # Draw black rect onto mask img1 = ImageDraw.Draw(mask) img1.rectangle(face_locations, fill=0) return mask @spaces.GPU(enable_queue=True) def segment_body(original_img, face=True): # Make a copy img = original_img.copy() # Segment image segments = segmenter(img) # Create list of masks segment_include = ["Hat", "Hair", "Sunglasses", "Upper-clothes", "Skirt", "Pants", "Dress", "Belt", "Left-shoe", "Right-shoe", "Face", "Left-leg", "Right-leg", "Left-arm", "Right-arm", "Bag","Scarf"] mask_list = [] for s in segments: if(s['label'] in segment_include): mask_list.append(s['mask']) # Paste all masks on top of eachother final_mask = np.array(mask_list[0]) for mask in mask_list: current_mask = np.array(mask) final_mask = final_mask + current_mask # Convert final mask from np array to PIL image final_mask = Image.fromarray(final_mask) # Remove face if(face==False): final_mask = remove_face(img.convert('RGB'), final_mask) # Apply mask to original image img.putalpha(final_mask) return img, final_mask