tonyliu404's picture
Update app.py
7406d08 verified
raw
history blame
1.64 kB
from transformers import pipeline
asr = pipeline("automatic-speech-recognition", model="distil-whisper/distil-small.en") #sound to text model
demo = gr.Blocks()
def transcribe_long_form(filepath):
if filepath is None:
gr.Warning("No audio found, please retry.")
return ""
audio, sampling_rate = sf.read(filepath) #reading the converted .wav
#converting audio into one dimension (stereo audio has 2, audio and spacial audio. We dont need spacial)
audio_transposed = np.transpose(audio)
audio_mono = librosa.to_mono(audio_transposed)
IPythonAudio(audio_mono, rate=sampling_rate)
#converting to same sampling rate as model
audio_16KHz = librosa.resample(audio_mono,
orig_sr=sampling_rate,
target_sr=16000)
output = asr(
audio_16KHz,
max_new_tokens=256,
chunk_length_s=30,
batch_size=12,
)
return output["text"]
mic_transcribe = gr.Interface(
fn=transcribe_long_form,
inputs=gr.Audio(sources="microphone",
type="filepath"),
outputs=gr.Textbox(label="Transcription",
lines=3),
allow_flagging="never")
file_transcribe = gr.Interface(
fn=transcribe_long_form,
inputs=gr.Audio(sources="upload",
type="filepath"),
outputs=gr.Textbox(label="Transcription",
lines=3),
allow_flagging="never",
)
with demo:
gr.TabbedInterface(
[mic_transcribe,
file_transcribe],
["Transcribe Microphone",
"Transcribe Audio File"],
)
demo.launch()