File size: 9,519 Bytes
f29fde5 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 |
import random
import re
import sys
import time
from pathlib import Path
import huggingface_hub
import numpy as np
import pandas as pd
from huggingface_hub.constants import HF_HOME
RESERVED_KEYS = ["project", "run", "timestamp", "step", "time"]
TRACKIO_DIR = Path(HF_HOME) / "trackio"
TRACKIO_LOGO_PATH = str(Path(__file__).parent.joinpath("trackio_logo.png"))
def generate_readable_name():
"""
Generates a random, readable name like "dainty-sunset-1"
"""
adjectives = [
"dainty",
"brave",
"calm",
"eager",
"fancy",
"gentle",
"happy",
"jolly",
"kind",
"lively",
"merry",
"nice",
"proud",
"quick",
"silly",
"tidy",
"witty",
"zealous",
"bright",
"shy",
"bold",
"clever",
"daring",
"elegant",
"faithful",
"graceful",
"honest",
"inventive",
"jovial",
"keen",
"lucky",
"modest",
"noble",
"optimistic",
"patient",
"quirky",
"resourceful",
"sincere",
"thoughtful",
"upbeat",
"valiant",
"warm",
"youthful",
"zesty",
"adventurous",
"breezy",
"cheerful",
"delightful",
"energetic",
"fearless",
"glad",
"hopeful",
"imaginative",
"joyful",
"kindly",
"luminous",
"mysterious",
"neat",
"outgoing",
"playful",
"radiant",
"spirited",
"tranquil",
"unique",
"vivid",
"wise",
"zany",
"artful",
"bubbly",
"charming",
"dazzling",
"earnest",
"festive",
"gentlemanly",
"hearty",
"intrepid",
"jubilant",
"knightly",
"lively",
"magnetic",
"nimble",
"orderly",
"peaceful",
"quick-witted",
"robust",
"sturdy",
"trusty",
"upstanding",
"vibrant",
"whimsical",
]
nouns = [
"sunset",
"forest",
"river",
"mountain",
"breeze",
"meadow",
"ocean",
"valley",
"sky",
"field",
"cloud",
"star",
"rain",
"leaf",
"stone",
"flower",
"bird",
"tree",
"wave",
"trail",
"island",
"desert",
"hill",
"lake",
"pond",
"grove",
"canyon",
"reef",
"bay",
"peak",
"glade",
"marsh",
"cliff",
"dune",
"spring",
"brook",
"cave",
"plain",
"ridge",
"wood",
"blossom",
"petal",
"root",
"branch",
"seed",
"acorn",
"pine",
"willow",
"cedar",
"elm",
"falcon",
"eagle",
"sparrow",
"robin",
"owl",
"finch",
"heron",
"crane",
"duck",
"swan",
"fox",
"wolf",
"bear",
"deer",
"moose",
"otter",
"beaver",
"lynx",
"hare",
"badger",
"butterfly",
"bee",
"ant",
"beetle",
"dragonfly",
"firefly",
"ladybug",
"moth",
"spider",
"worm",
"coral",
"kelp",
"shell",
"pebble",
"boulder",
"cobble",
"sand",
"wavelet",
"tide",
"current",
]
adjective = random.choice(adjectives)
noun = random.choice(nouns)
number = random.randint(1, 99)
return f"{adjective}-{noun}-{number}"
def block_except_in_notebook():
in_notebook = bool(getattr(sys, "ps1", sys.flags.interactive))
if in_notebook:
return
try:
while True:
time.sleep(0.1)
except (KeyboardInterrupt, OSError):
print("Keyboard interruption in main thread... closing dashboard.")
def simplify_column_names(columns: list[str]) -> dict[str, str]:
"""
Simplifies column names to first 10 alphanumeric or "/" characters with unique suffixes.
Args:
columns: List of original column names
Returns:
Dictionary mapping original column names to simplified names
"""
simplified_names = {}
used_names = set()
for col in columns:
alphanumeric = re.sub(r"[^a-zA-Z0-9/]", "", col)
base_name = alphanumeric[:10] if alphanumeric else f"col_{len(used_names)}"
final_name = base_name
suffix = 1
while final_name in used_names:
final_name = f"{base_name}_{suffix}"
suffix += 1
simplified_names[col] = final_name
used_names.add(final_name)
return simplified_names
def print_dashboard_instructions(project: str) -> None:
"""
Prints instructions for viewing the Trackio dashboard.
Args:
project: The name of the project to show dashboard for.
"""
YELLOW = "\033[93m"
BOLD = "\033[1m"
RESET = "\033[0m"
print("* View dashboard by running in your terminal:")
print(f'{BOLD}{YELLOW}trackio show --project "{project}"{RESET}')
print(f'* or by running in Python: trackio.show(project="{project}")')
def preprocess_space_and_dataset_ids(
space_id: str | None, dataset_id: str | None
) -> tuple[str | None, str | None]:
if space_id is not None and "/" not in space_id:
username = huggingface_hub.whoami()["name"]
space_id = f"{username}/{space_id}"
if dataset_id is not None and "/" not in dataset_id:
username = huggingface_hub.whoami()["name"]
dataset_id = f"{username}/{dataset_id}"
if space_id is not None and dataset_id is None:
dataset_id = f"{space_id}_dataset"
return space_id, dataset_id
def fibo():
"""Generator for Fibonacci backoff: 1, 1, 2, 3, 5, 8, ..."""
a, b = 1, 1
while True:
yield a
a, b = b, a + b
COLOR_PALETTE = [
"#3B82F6",
"#EF4444",
"#10B981",
"#F59E0B",
"#8B5CF6",
"#EC4899",
"#06B6D4",
"#84CC16",
"#F97316",
"#6366F1",
]
def get_color_mapping(runs: list[str], smoothing: bool) -> dict[str, str]:
"""Generate color mapping for runs, with transparency for original data when smoothing is enabled."""
color_map = {}
for i, run in enumerate(runs):
base_color = COLOR_PALETTE[i % len(COLOR_PALETTE)]
if smoothing:
color_map[f"{run}_smoothed"] = base_color
color_map[f"{run}_original"] = base_color + "4D"
else:
color_map[run] = base_color
return color_map
def downsample(
df: pd.DataFrame,
x: str,
y: str,
color: str | None,
x_lim: tuple[float, float] | None = None,
) -> pd.DataFrame:
if df.empty:
return df
columns_to_keep = [x, y]
if color is not None and color in df.columns:
columns_to_keep.append(color)
df = df[columns_to_keep].copy()
n_bins = 100
if color is not None and color in df.columns:
groups = df.groupby(color)
else:
groups = [(None, df)]
downsampled_indices = []
for _, group_df in groups:
if group_df.empty:
continue
group_df = group_df.sort_values(x)
if x_lim is not None:
x_min, x_max = x_lim
before_point = group_df[group_df[x] < x_min].tail(1)
after_point = group_df[group_df[x] > x_max].head(1)
group_df = group_df[(group_df[x] >= x_min) & (group_df[x] <= x_max)]
else:
before_point = after_point = None
x_min = group_df[x].min()
x_max = group_df[x].max()
if before_point is not None and not before_point.empty:
downsampled_indices.extend(before_point.index.tolist())
if after_point is not None and not after_point.empty:
downsampled_indices.extend(after_point.index.tolist())
if group_df.empty:
continue
if x_min == x_max:
min_y_idx = group_df[y].idxmin()
max_y_idx = group_df[y].idxmax()
if min_y_idx != max_y_idx:
downsampled_indices.extend([min_y_idx, max_y_idx])
else:
downsampled_indices.append(min_y_idx)
continue
if len(group_df) < 500:
downsampled_indices.extend(group_df.index.tolist())
continue
bins = np.linspace(x_min, x_max, n_bins + 1)
group_df["bin"] = pd.cut(
group_df[x], bins=bins, labels=False, include_lowest=True
)
for bin_idx in group_df["bin"].dropna().unique():
bin_data = group_df[group_df["bin"] == bin_idx]
if bin_data.empty:
continue
min_y_idx = bin_data[y].idxmin()
max_y_idx = bin_data[y].idxmax()
downsampled_indices.append(min_y_idx)
if min_y_idx != max_y_idx:
downsampled_indices.append(max_y_idx)
unique_indices = list(set(downsampled_indices))
downsampled_df = df.loc[unique_indices].copy()
downsampled_df = downsampled_df.sort_values(x).reset_index(drop=True)
downsampled_df = downsampled_df.drop(columns=["bin"], errors="ignore")
return downsampled_df
|