# Model arguments model_name_or_path: Qwen/Qwen2.5-1.5B model_revision: main torch_dtype: bfloat16 attn_implementation: flash_attention_2 # Data training arguments dataset_name: trl-lib/tldr dataset_num_proc: 4 # SFT trainer config bf16: true do_eval: false eval_strategy: 'no' gradient_accumulation_steps: 8 gradient_checkpointing: true gradient_checkpointing_kwargs: use_reentrant: false # hub_model_id: open-r1/OlympicCoder-7B hub_strategy: every_save learning_rate: 1.0e-05 log_level: info logging_steps: 1 logging_strategy: steps lr_scheduler_type: cosine_with_min_lr lr_scheduler_kwargs: min_lr_rate: 0.1 packing: false max_grad_norm: 0.2 max_length: 512 max_steps: -1 num_train_epochs: 10 output_dir: data/Qwen2.5-0.5B-SFT overwrite_output_dir: true per_device_eval_batch_size: 1 per_device_train_batch_size: 2 push_to_hub: true report_to: - wandb save_strategy: epoch save_total_limit: 1 seed: 42 use_liger_kernel: true warmup_ratio: 0.03