Spaces:
Sleeping
Sleeping
import glob | |
import os | |
from pathlib import Path | |
import numpy as np | |
import torch | |
import torch.nn.functional as F | |
from PIL import Image | |
from torchvision import transforms | |
from tqdm import tqdm | |
import joblib | |
from huggingface_hub import hf_hub_download | |
from .load_u2net import load_cloth_segm_model | |
from .utils import NormalizeImage, naive_cutout, resize_by_bigger_index, image_resize | |
def segment_garment(inputs_dir, outputs_dir, cls="all"): | |
os.makedirs(outputs_dir, exist_ok=True) | |
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu') | |
transform_fn = transforms.Compose( | |
[transforms.ToTensor(), | |
NormalizeImage(0.5, 0.5)] | |
) | |
# load model from huggingface | |
file_path = hf_hub_download(repo_id="tryonlabs/u2net-cloth-segmentation", filename="u2net_cloth_segm.pth") | |
print("model loaded from huggingface:", file_path) | |
net = load_cloth_segm_model(device, file_path, in_ch=3, out_ch=4) | |
images_list = sorted(os.listdir(inputs_dir)) | |
pbar = tqdm(total=len(images_list)) | |
for image_name in images_list: | |
img = Image.open(os.path.join(inputs_dir, image_name)).convert('RGB') | |
img_size = img.size | |
img = img.resize((768, 768), Image.BICUBIC) | |
image_tensor = transform_fn(img) | |
image_tensor = torch.unsqueeze(image_tensor, 0) | |
with torch.no_grad(): | |
output_tensor = net(image_tensor.to(device)) | |
output_tensor = F.log_softmax(output_tensor[0], dim=1) | |
output_tensor = torch.max(output_tensor, dim=1, keepdim=True)[1] | |
output_tensor = torch.squeeze(output_tensor, dim=0) | |
output_arr = output_tensor.cpu().numpy() | |
if cls == "all": | |
classes_to_save = [] | |
# Check which classes are present in the image | |
for cls in range(1, 4): # Exclude background class (0) | |
if np.any(output_arr == cls): | |
classes_to_save.append(cls) | |
elif cls == "upper": | |
classes_to_save = [1] | |
elif cls == "lower": | |
classes_to_save = [2] | |
elif cls == "dress": | |
classes_to_save = [3] | |
else: | |
raise ValueError(f"Unknown cls: {cls}") | |
for cls1 in classes_to_save: | |
alpha_mask = (output_arr == cls1).astype(np.uint8) * 255 | |
alpha_mask = alpha_mask[0] # Selecting the first channel to make it 2D | |
alpha_mask_img = Image.fromarray(alpha_mask, mode='L') | |
alpha_mask_img = alpha_mask_img.resize(img_size, Image.BICUBIC) | |
alpha_mask_img.save(os.path.join(outputs_dir, f'{image_name.split(".")[0]}_{cls1}.jpg')) | |
pbar.update(1) | |
pbar.close() | |
def extract_garment(inputs_dir, outputs_dir, cls="all", resize_to_width=None): | |
os.makedirs(outputs_dir, exist_ok=True) | |
cloth_mask_dir = os.path.join(Path(outputs_dir).parent.absolute(), "cloth-mask") | |
os.makedirs(cloth_mask_dir, exist_ok=True) | |
segment_garment(inputs_dir, os.path.join(Path(outputs_dir).parent.absolute(), "cloth-mask"), cls=cls) | |
images_path = sorted(glob.glob(os.path.join(inputs_dir, "*"))) | |
masks_path = sorted(glob.glob(os.path.join(cloth_mask_dir, "*"))) | |
img = Image.open(images_path[0]) | |
for mask_path in masks_path: | |
mask = Image.open(mask_path) | |
cutout = np.array(naive_cutout(img, mask)) | |
cutout = resize_by_bigger_index(cutout) | |
canvas = np.ones((1024, 768, 3), np.uint8) * 255 | |
y1, y2 = (canvas.shape[0] - cutout.shape[0]) // 2, (canvas.shape[0] + cutout.shape[0]) // 2 | |
x1, x2 = (canvas.shape[1] - cutout.shape[1]) // 2, (canvas.shape[1] + cutout.shape[1]) // 2 | |
alpha_s = cutout[:, :, 3] / 255.0 | |
alpha_l = 1.0 - alpha_s | |
for c in range(0, 3): | |
canvas[y1:y2, x1:x2, c] = (alpha_s * cutout[:, :, c] + | |
alpha_l * canvas[y1:y2, x1:x2, c]) | |
# resize image before saving | |
if resize_to_width: | |
canvas = image_resize(canvas, width=resize_to_width) | |
canvas = Image.fromarray(canvas) | |
canvas.save(os.path.join(outputs_dir, f"{os.path.basename(mask_path).split('.')[0]}.jpg"), format='JPEG') | |