import gradio as gr from diffusers import AutoPipelineForText2Image, AutoPipelineForImage2Image from diffusers.utils import load_image import torch # Clear CUDA cache torch.cuda.empty_cache() # Define custom CSS to style the Gradio interface css_style = """ .container { max-width: 3xl; padding: 2rem 1rem; margin: auto; } h1 { text-align: center; margin-bottom: 1.5rem; font-size: 1.875rem; font-weight: bold; } .form-textarea { width: 100%; margin-top: 0.25rem; height: 6rem; } .form-range { width: 100%; } .form-input { margin-top: 0.25rem; width: 9rem; } .form-checkbox { height: 1.25rem; width: 1.25rem; color: blue; } .button { background-color: blue; color: white; padding: 0.5rem 1rem; border-radius: 0.375rem; font-weight: bold; } .error { color: red; text-align: center; } """ # Set environment variable for memory fragmentation import os os.environ['PYTORCH_CUDA_ALLOC_CONF'] = 'max_split_size_mb:128' device = "cuda" if torch.cuda.is_available() else "cpu" pipes = { "txt2img": AutoPipelineForText2Image.from_pretrained("stabilityai/sdxl-turbo", torch_dtype=torch.float16, variant="fp16").to(device), "img2img": AutoPipelineForImage2Image.from_pretrained("stabilityai/sdxl-turbo", torch_dtype=torch.float16, variant="fp16").to(device) } if device == "cpu": pipes["txt2img"].enable_model_cpu_offload() pipes["img2img"].enable_model_cpu_offload() def run(prompt, image): try: print(f"prompt={prompt}, image={image}") if image is None: return pipes["txt2img"](prompt=prompt, num_inference_steps=1, guidance_scale=0.0).images[0] else: image = image.resize((512,512)) print(f"img2img image={image}") return pipes["img2img"](prompt, image=image, num_inference_steps=2, strength=0.5, guidance_scale=0.0).images[0] except RuntimeError as e: if "CUDA out of memory" in str(e): print("CUDA out of memory. Trying to clear cache.") torch.cuda.empty_cache() # Consider additional fallback strategies here else: raise e demo = gr.Interface( run, inputs=[ gr.Textbox(label="Prompt"), gr.Image(type="pil") ], outputs=gr.Image(width=512, height=512), live=True ) demo.launch()