Spaces:
Sleeping
Sleeping
File size: 17,006 Bytes
10e9b7d eccf8e4 315f4fc 3c4371f ccfcfa9 10e9b7d 315f4fc e80aab9 3db6293 315f4fc e80aab9 315f4fc 4021bf3 315f4fc 3c4371f 315f4fc 3c4371f 315f4fc 31243f4 315f4fc eccf8e4 315f4fc 31243f4 7d65c66 31243f4 315f4fc 31243f4 315f4fc 31243f4 315f4fc e80aab9 315f4fc 7d65c66 315f4fc 31243f4 315f4fc e80aab9 315f4fc 7d65c66 e80aab9 315f4fc 31243f4 e80aab9 3c4371f e80aab9 315f4fc e80aab9 3c4371f e80aab9 3c4371f 315f4fc 7d65c66 315f4fc 7d65c66 315f4fc e80aab9 315f4fc e80aab9 315f4fc e80aab9 315f4fc e80aab9 315f4fc 3c4371f 315f4fc 7d65c66 315f4fc 7d65c66 315f4fc 3c4371f 315f4fc 3c4371f |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 |
import os
import gradio as gr
import requests
import asyncio
import threading
import time
import json
from typing import Dict, List, Optional, Tuple
from concurrent.futures import ThreadPoolExecutor, as_completed
import pandas as pd
from smolagents import GradioUI, CodeAgent, HfApiModel, ApiModel, InferenceClientModel, LiteLLMModel, ToolCallingAgent, Tool, DuckDuckGoSearchTool
from agent import JarvisAgent
# Import configuration manager
try:
from config import config, check_required_keys_interactive
INTERACTIVE_MODE = True
except ImportError:
INTERACTIVE_MODE = False
print("β οΈ config.py not found - running with basic functionality")
# --- Constants ---
DEFAULT_API_URL = "https://agents-course-unit4-scoring.hf.space"
CACHE_FILE = "answers_cache.json"
MAX_WORKERS = 3 # Parallel processing limit
BATCH_SIZE = 5 # Process questions in batches
class AnswerCache:
"""Simple file-based cache for answers"""
def __init__(self, cache_file: str = CACHE_FILE):
self.cache_file = cache_file
self._cache = self._load_cache()
def _load_cache(self) -> Dict:
try:
if os.path.exists(self.cache_file):
with open(self.cache_file, 'r') as f:
return json.load(f)
except Exception as e:
print(f"Error loading cache: {e}")
return {}
def _save_cache(self):
try:
with open(self.cache_file, 'w') as f:
json.dump(self._cache, f, indent=2)
except Exception as e:
print(f"Error saving cache: {e}")
def get(self, task_id: str) -> Optional[str]:
return self._cache.get(task_id)
def set(self, task_id: str, answer: str):
self._cache[task_id] = answer
self._save_cache()
def clear(self):
self._cache.clear()
self._save_cache()
class AgentRunner:
"""Manages agent execution with caching and async processing"""
def __init__(self):
self.cache = AnswerCache()
self.agent = None
self._progress_callback = None
def set_progress_callback(self, callback):
self._progress_callback = callback
def _update_progress(self, message: str, progress: float = None):
if self._progress_callback:
self._progress_callback(message, progress)
def initialize_agent(self) -> bool:
"""Initialize the agent with error handling"""
try:
if self.agent is None:
self.agent = JarvisAgent()
return True
except Exception as e:
self._update_progress(f"Error initializing agent: {e}")
return False
def process_question(self, task_id: str, question: str, use_cache: bool = True) -> Tuple[str, str]:
"""Process a single question with caching"""
try:
# Check cache first
if use_cache:
cached_answer = self.cache.get(task_id)
if cached_answer:
return task_id, cached_answer
# Process with agent
if not self.agent:
raise Exception("Agent not initialized")
answer = self.agent(question)
# Cache the result
if use_cache:
self.cache.set(task_id, answer)
return task_id, answer
except Exception as e:
error_msg = f"AGENT ERROR: {e}"
return task_id, error_msg
def process_questions_parallel(self, questions_data: List[Dict], use_cache: bool = True) -> List[Dict]:
"""Process questions in parallel with progress updates"""
if not self.initialize_agent():
return []
total_questions = len(questions_data)
results = []
completed = 0
self._update_progress(f"Processing {total_questions} questions in parallel...", 0)
# Process in batches to avoid overwhelming the system
for batch_start in range(0, total_questions, BATCH_SIZE):
batch_end = min(batch_start + BATCH_SIZE, total_questions)
batch = questions_data[batch_start:batch_end]
with ThreadPoolExecutor(max_workers=MAX_WORKERS) as executor:
# Submit batch to executor
future_to_question = {
executor.submit(
self.process_question,
item["task_id"],
item["question"],
use_cache
): item for item in batch
}
# Collect results as they complete
for future in as_completed(future_to_question):
item = future_to_question[future]
try:
task_id, answer = future.result()
results.append({
"task_id": task_id,
"question": item["question"],
"submitted_answer": answer
})
completed += 1
progress = (completed / total_questions) * 100
self._update_progress(
f"Completed {completed}/{total_questions} questions ({progress:.1f}%)",
progress
)
except Exception as e:
completed += 1
results.append({
"task_id": item["task_id"],
"question": item["question"],
"submitted_answer": f"PROCESSING ERROR: {e}"
})
return results
# Global runner instance
runner = AgentRunner()
def fetch_questions(api_url: str = DEFAULT_API_URL) -> Tuple[bool, List[Dict], str]:
"""Fetch questions from the API"""
questions_url = f"{api_url}/questions"
try:
print(f"Fetching questions from: {questions_url}")
response = requests.get(questions_url, timeout=15)
response.raise_for_status()
questions_data = response.json()
if not questions_data:
return False, [], "Fetched questions list is empty."
print(f"Fetched {len(questions_data)} questions.")
return True, questions_data, f"Successfully fetched {len(questions_data)} questions."
except requests.exceptions.RequestException as e:
error_msg = f"Error fetching questions: {e}"
print(error_msg)
return False, [], error_msg
except Exception as e:
error_msg = f"Unexpected error fetching questions: {e}"
print(error_msg)
return False, [], error_msg
def submit_answers(username: str, answers: List[Dict], agent_code: str, api_url: str = DEFAULT_API_URL) -> Tuple[bool, str]:
"""Submit answers to the API"""
submit_url = f"{api_url}/submit"
submission_data = {
"username": username.strip(),
"agent_code": agent_code,
"answers": [{"task_id": item["task_id"], "submitted_answer": item["submitted_answer"]} for item in answers]
}
try:
print(f"Submitting {len(answers)} answers to: {submit_url}")
response = requests.post(submit_url, json=submission_data, timeout=60)
response.raise_for_status()
result_data = response.json()
final_status = (
f"Submission Successful!\n"
f"User: {result_data.get('username')}\n"
f"Overall Score: {result_data.get('score', 'N/A')}% "
f"({result_data.get('correct_count', '?')}/{result_data.get('total_attempted', '?')} correct)\n"
f"Message: {result_data.get('message', 'No message received.')}"
)
print("Submission successful.")
return True, final_status
except requests.exceptions.HTTPError as e:
error_detail = f"Server responded with status {e.response.status_code}."
try:
error_json = e.response.json()
error_detail += f" Detail: {error_json.get('detail', e.response.text)}"
except:
error_detail += f" Response: {e.response.text[:500]}"
return False, f"Submission Failed: {error_detail}"
except Exception as e:
return False, f"Submission Failed: {e}"
# State management for async operations
class AppState:
def __init__(self):
self.questions_data = []
self.processed_results = []
self.is_processing = False
self.is_submitting = False
app_state = AppState()
def process_questions_async(progress_callback, use_cache: bool = True):
"""Process questions asynchronously"""
if not app_state.questions_data:
return
if app_state.is_processing:
return
app_state.is_processing = True
def run_processing():
try:
runner.set_progress_callback(progress_callback)
app_state.processed_results = runner.process_questions_parallel(
app_state.questions_data,
use_cache
)
except Exception as e:
print(f"Error during processing: {e}")
finally:
app_state.is_processing = False
# Run in separate thread
thread = threading.Thread(target=run_processing, daemon=True)
thread.start()
def fetch_questions_action():
"""Fetch questions action"""
success, questions_data, message = fetch_questions()
if success:
app_state.questions_data = questions_data
return message, len(questions_data), gr.update(interactive=True), gr.update(interactive=True)
else:
return message, 0, gr.update(interactive=False), gr.update(interactive=False)
def get_cached_count():
"""Get count of cached answers"""
if not hasattr(runner, 'cache'):
return 0
return len(runner.cache._cache)
def clear_cache_action():
"""Clear the answer cache"""
runner.cache.clear()
return "Cache cleared successfully!", get_cached_count()
def get_results_table():
"""Get current results as DataFrame"""
if not app_state.processed_results:
return pd.DataFrame()
display_results = [
{
"Task ID": item["task_id"],
"Question": item["question"][:100] + "..." if len(item["question"]) > 100 else item["question"],
"Answer": item["submitted_answer"][:200] + "..." if len(item["submitted_answer"]) > 200 else item["submitted_answer"]
}
for item in app_state.processed_results
]
return pd.DataFrame(display_results)
def submit_answers_action(profile: gr.OAuthProfile | None):
"""Submit answers action"""
if not profile:
return "β Please log in to Hugging Face first."
if not app_state.processed_results:
return "β No processed results to submit. Please process questions first."
if app_state.is_submitting:
return "β³ Already submitting..."
app_state.is_submitting = True
try:
username = profile.username
space_id = os.getenv("SPACE_ID")
agent_code = f"https://huggingface.co/spaces/{space_id}/tree/main" if space_id else "N/A"
success, message = submit_answers(username, app_state.processed_results, agent_code)
return message
finally:
app_state.is_submitting = False
# --- Gradio Interface ---
with gr.Blocks(title="Optimized GAIA Agent Runner") as demo:
gr.Markdown("# π Optimized GAIA Agent Runner")
gr.Markdown("""
**Enhanced Features:**
- β‘ **Parallel Processing**: Questions processed concurrently for faster execution
- πΎ **Smart Caching**: Answers cached to avoid reprocessing
- π **Real-time Progress**: Live updates during processing
- π **Async Operations**: Non-blocking UI for better user experience
- π‘οΈ **Error Recovery**: Individual question failures don't stop the entire process
**Instructions:**
1. Log in to your Hugging Face account
2. Fetch questions from the server
3. Process questions (with progress tracking)
4. Submit your answers
""")
with gr.Row():
gr.LoginButton()
with gr.Tab("π Process Questions"):
with gr.Row():
with gr.Column(scale=2):
fetch_btn = gr.Button("π₯ Fetch Questions", variant="primary")
fetch_status = gr.Textbox(label="Fetch Status", interactive=False)
question_count = gr.Number(label="Questions Loaded", value=0, interactive=False)
with gr.Column(scale=1):
cache_info = gr.Number(label="Cached Answers", value=get_cached_count(), interactive=False)
clear_cache_btn = gr.Button("ποΈ Clear Cache", variant="secondary")
with gr.Row():
with gr.Column():
use_cache = gr.Checkbox(label="Use Cache", value=True)
process_btn = gr.Button("β‘ Process Questions", variant="primary", interactive=False)
check_btn = gr.Button("π Check Progress", variant="secondary")
progress_text = gr.Textbox(label="Progress", interactive=False, lines=3)
results_table = gr.DataFrame(label="π Results Preview", wrap=True)
with gr.Tab("π€ Submit Results"):
with gr.Column():
submit_btn = gr.Button("π Submit to GAIA", variant="primary", size="lg")
submit_status = gr.Textbox(label="Submission Status", interactive=False, lines=4)
# Event handlers
fetch_btn.click(
fn=fetch_questions_action,
outputs=[fetch_status, question_count, process_btn, submit_btn]
)
clear_cache_btn.click(
fn=clear_cache_action,
outputs=[fetch_status, cache_info]
)
def start_processing(use_cache_val):
if app_state.is_processing:
return "β³ Already processing...", pd.DataFrame()
if not app_state.questions_data:
return "β No questions loaded. Please fetch questions first.", pd.DataFrame()
# Start processing in background
def run_processing():
app_state.is_processing = True
try:
app_state.processed_results = runner.process_questions_parallel(
app_state.questions_data,
use_cache_val
)
except Exception as e:
print(f"Error during processing: {e}")
finally:
app_state.is_processing = False
thread = threading.Thread(target=run_processing, daemon=True)
thread.start()
return "π Started processing questions in background...", pd.DataFrame()
def check_progress():
"""Check processing status and update table"""
table = get_results_table()
if app_state.is_processing:
progress_msg = "π Processing in progress... Click 'Check Progress' to update."
elif app_state.processed_results:
progress_msg = f"β
Completed {len(app_state.processed_results)} questions"
else:
progress_msg = "β³ Ready to process questions"
return progress_msg, table
# Event handlers
process_btn.click(
fn=start_processing,
inputs=[use_cache],
outputs=[progress_text, results_table]
)
check_btn.click(
fn=check_progress,
outputs=[progress_text, results_table]
)
submit_btn.click(
fn=submit_answers_action,
outputs=[submit_status]
)
if __name__ == "__main__":
print("\n" + "="*50)
print("π OPTIMIZED GAIA AGENT RUNNER")
print("="*50)
# Check API key configuration
if INTERACTIVE_MODE:
print("\nπ§ Checking API Key Configuration...")
if not config.available_keys:
print("β οΈ No API keys configured. Running with limited functionality.")
print("π‘ For full features, set up API keys as shown above.")
else:
print("β
API keys configured - full functionality available")
# Environment info
space_host = os.getenv("SPACE_HOST")
space_id = os.getenv("SPACE_ID")
if space_host:
print(f"β
SPACE_HOST: {space_host}")
print(f" π Runtime URL: https://{space_host}.hf.space")
if space_id:
print(f"β
SPACE_ID: {space_id}")
print(f" π Repo: https://huggingface.co/spaces/{space_id}")
print(f"πΎ Cache file: {CACHE_FILE}")
print(f"β‘ Max workers: {MAX_WORKERS}")
print(f"π¦ Batch size: {BATCH_SIZE}")
print("="*50 + "\n")
demo.launch(debug=True, share=False) |