File size: 19,894 Bytes
83c80f5
 
cd090ec
 
 
 
83c80f5
 
 
cd090ec
83c80f5
cd090ec
 
 
 
 
 
 
 
 
 
 
83c80f5
cd090ec
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
83c80f5
cd090ec
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
83c80f5
cd090ec
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
83c80f5
cd090ec
 
83c80f5
 
 
cd090ec
83c80f5
 
 
 
cd090ec
 
 
83c80f5
cd090ec
 
 
 
 
 
 
83c80f5
cd090ec
 
 
 
 
83c80f5
cd090ec
 
 
 
 
 
 
 
 
83c80f5
 
 
 
cd090ec
 
83c80f5
cd090ec
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
83c80f5
 
cd090ec
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
83c80f5
cd090ec
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
83c80f5
cd090ec
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
83c80f5
cd090ec
 
 
 
 
83c80f5
cd090ec
 
83c80f5
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
# analyzer.py
import os, time, zipfile, numpy as np, cv2, math, pathlib
from datetime import datetime
from collections import deque, Counter
import mediapipe as mp

# -------- Paths --------
OUTPUT_DIR = "/tmp/form_analysis"
os.makedirs(OUTPUT_DIR, exist_ok=True)

# -------- Styles & constants --------
mp_pose = mp.solutions.pose
FONT=cv2.FONT_HERSHEY_SIMPLEX; LINE=cv2.LINE_AA
COLOR_TEXT=(255,255,255); COLOR_BOX=(30,30,30); COLOR_BORDER=(80,80,80)
COLOR_BONE=(255,220,180); COLOR_BONE_SHADOW=(35,35,35)
COLOR_JOINT=(255,80,80);  COLOR_JOINT_EDGE=(255,255,255)
COLOR_GREEN=(80,190,80); COLOR_AMBER=(80,170,255); COLOR_RED=(40,60,255)
COLOR_CYAN=(255,255,0)  # ankle line + stride label border (BGR)
TIMES="x"; VIS_THRESH=0.60
LABEL_WINDOW_SEC=1.5
MIN_DROPOUT_HOLD_SEC=0.07

# -------- Drawing helpers --------
def measure_box(text, fs=0.9, th=2, pad_x=12, pad_y=10):
    (w,h),_=cv2.getTextSize(text,FONT,fs,th)
    return w+2*pad_x, h+2*pad_y

def draw_box(img, text, xy, border_color=COLOR_BORDER, fs=0.9, th=2, alpha=0.82):
    x,y=xy; w,h=measure_box(text,fs,th)
    overlay=img.copy()
    cv2.rectangle(overlay,(x,y),(x+w,y+h),COLOR_BOX,-1)
    cv2.addWeighted(overlay,alpha,img,1-alpha,0,img)
    cv2.rectangle(img,(x,y),(x+w,y+h),border_color,2,LINE)
    (tw,thh),_=cv2.getTextSize(text,FONT,fs,th)
    cv2.putText(img,text,(x+12,y+10+thh),FONT,fs,COLOR_TEXT,th,LINE)
    return (x,y,w,h)

def draw_bottom_labels(img, items, gap=10, margin=16, fs=0.9):
    H,W=img.shape[:2]
    x=margin; y=H-margin
    row_h=0
    rows=[[]]; widths=[margin]
    for text,color in items:
        w,h=measure_box(text,fs)
        if widths[-1]+w+margin>W and rows[-1]:
            rows.append([]); widths.append(margin)
        rows[-1].append((text,color,w,h))
        widths[-1]+=w+gap
        row_h=max(row_h,h)
    for row in rows[::-1]:
        x=margin; y-=row_h+4
        for text,color,w,h in row:
            draw_box(img,text,(x,y),border_color=color,fs=fs)
            x+=w+gap

# -------- Skeleton (raw for zero lag; slight head stabilization) --------
POSE_EDGES = list(mp_pose.POSE_CONNECTIONS)
HEAD_IDS = [
    mp_pose.PoseLandmark.NOSE.value,
    mp_pose.PoseLandmark.LEFT_EYE.value, mp_pose.PoseLandmark.RIGHT_EYE.value,
    mp_pose.PoseLandmark.LEFT_EAR.value, mp_pose.PoseLandmark.RIGHT_EAR.value,
    mp_pose.PoseLandmark.MOUTH_LEFT.value, mp_pose.PoseLandmark.MOUTH_RIGHT.value
]
def draw_skeleton(img, lm_raw, W, H, head_override=None, visibility_thresh=0.5):
    t_line = max(2, W//360); t_shadow = t_line+2
    r_joint = max(3, W//190); r_edge  = r_joint+2
    pts={}
    for i,p in enumerate(lm_raw):
        if p.visibility<visibility_thresh: continue
        x = int((head_override.get(i)[0] if (head_override and i in head_override) else p.x)*W)
        y = int((head_override.get(i)[1] if (head_override and i in head_override) else p.y)*H)
        pts[i]=(x,y)
    for a,b in POSE_EDGES:
        if a in pts and b in pts:
            ax,ay=pts[a]; bx,by=pts[b]
            cv2.line(img,(ax,ay),(bx,by),COLOR_BONE_SHADOW,t_shadow,LINE)
            cv2.line(img,(ax,ay),(bx,by),COLOR_BONE,t_line,LINE)
    for i,(x,y) in pts.items():
        cv2.circle(img,(x,y),r_edge,COLOR_JOINT_EDGE,-1,LINE)
        cv2.circle(img,(x,y),r_joint,COLOR_JOINT,-1,LINE)

# -------- Math & smoothing --------
def calculate_angle(a,b,c):
    a,b,c=np.array(a,float),np.array(b,float),np.array(c,float)
    ang=abs(np.degrees(np.arctan2(c[1]-b[1],c[0]-b[0])-np.arctan2(a[1]-b[1],a[0]-b[0])))
    return int(round(360-ang if ang>180 else ang))
def sev_label(angle):
    if angle<30 or angle>160: return "Fix",COLOR_RED
    if angle<50 or angle>140: return "Improve",COLOR_AMBER
    return "Good",COLOR_GREEN
def confidence_word(avgv): return "High" if avgv>=0.85 else ("Medium" if avgv>=0.7 else "Low")

class LowPass:
    def __init__(self): self.y=None
    def filt(self,x,a): self.y=x if self.y is None else (a*x+(1-a)*self.y); return self.y
def alpha_from_cutoff(cutoff,freq):
    if cutoff<=0: return 1.0
    tau=1.0/(2*np.pi*cutoff); return 1.0/(1.0+tau*freq)
class OneEuro:
    def __init__(self,freq,min_cutoff=1.3,beta=0.25,d_cutoff=1.0):
        self.freq=freq; self.min_cut=min_cutoff; self.beta=beta; self.d_cut=d_cutoff
        self.dx=LowPass(); self.x=LowPass(); self.last=None
    def filt(self,x):
        if self.last is None: self.last=x
        dx=(x-self.last)*self.freq
        edx=self.dx.filt(dx, alpha_from_cutoff(self.d_cut, self.freq))
        cutoff=self.min_cut + self.beta*abs(edx)
        out=self.x.filt(x, alpha_from_cutoff(cutoff, self.freq))
        self.last=out; return out
class LandmarkSmootherForMetrics:
    def __init__(self,n_points=33,freq=30.0):
        self.fx=[OneEuro(freq,1.3,0.25,1.0) for _ in range(n_points)]
        self.fy=[OneEuro(freq,1.3,0.25,1.0) for _ in range(n_points)]
        self.fv=[OneEuro(freq,1.5,0.05,1.0) for _ in range(n_points)]
    def update(self, raw):
        arr=np.array([[p.x,p.y,p.visibility] for p in raw],dtype=np.float32)
        class P: pass
        out=[]
        for i,(x,y,v) in enumerate(arr):
            p=P(); p.x=float(self.fx[i].filt(x)); p.y=float(self.fy[i].filt(y))
            p.z=0.0; p.visibility=float(self.fv[i].filt(v)); out.append(p)
        return out

class HeadStabilizer:
    def __init__(self, n_points=33, freq=30.0):
        self.fx=[OneEuro(freq,1.0,0.15,1.0) for _ in range(n_points)]
        self.fy=[OneEuro(freq,1.0,0.15,1.0) for _ in range(n_points)]
    def override(self, raw, use_ids):
        out={}
        for i in use_ids:
            rx,ry = raw[i].x, raw[i].y
            sx = float(self.fx[i].filt(rx))
            sy = float(self.fy[i].filt(ry))
            out[i] = (0.7*rx + 0.3*sx, 0.7*ry + 0.3*sy)
        return out

class LandmarkMemory:
    def __init__(self, hold_frames=2): self.last=None; self.hold=0; self.hold_frames=hold_frames
    def put(self,lm): self.last=lm; self.hold=self.hold_frames
    def get(self):
        if self.hold>0: self.hold-=1; return self.last
        return None

# -------- Video writer --------
def make_writer(base_no_ext, fps, size):
    W,H=size
    path=f"{base_no_ext}.mp4"
    four=cv2.VideoWriter_fourcc(*'mp4v')
    vw=cv2.VideoWriter(path,four,fps,(W,H))
    if vw.isOpened(): return vw,path
    vw.release()
    path=f"{base_no_ext}.avi"
    four=cv2.VideoWriter_fourcc(*'MJPG')
    vw=cv2.VideoWriter(path,four,fps,(W,H))
    if vw.isOpened(): return vw,path
    raise RuntimeError("VideoWriter failed for both MP4 and AVI")

# -------- Simple coach report --------
def compose_simple_report(meta, m):
    H=[]
    H.append("<html><head><meta charset='utf-8'><title>Running Form Report</title>")
    H.append("<style>body{font-family:Arial,Helvetica,sans-serif;line-height:1.5;} h2,h3{margin:.5em 0;} ul{margin:.3em 0 .8em 1.2em;} li{margin:.25em 0;} .small{color:#666;font-size:12px}</style></head><body>")
    H.append(f"<h2>Running Form Report</h2><div class='small'>Created: {meta['timestamp']} • Confidence: {m['conf_word']}</div>")
    H.append("<h3>1) Introduction</h3><ul>")
    H.append("<li>Nice work getting this filmed — great base to build from.</li>")
    if m['stride_flag']=='Good': H.append("<li>Your step length looks natural for your height.</li>")
    H.append("<li>Overall rhythm and posture are coming along.</li>")
    H.append("</ul>")
    H.append("<h3>2) What we saw</h3>")
    H.append("<b>Posture</b><ul>")
    if m['fwd_lean_pct'] is not None:
        H.append(f"<li>Forward lean in ~{int(round(m['fwd_lean_pct']))}% of frames. Keep tall and hinge gently from the ankles.</li>")
    else:
        H.append("<li>Posture looked steady. Stay tall and relaxed.</li>")
    H.append("</ul><b>Arms</b><ul><li>Hands by pockets, swing straight forward/back. Relax the shoulders.</li></ul>")
    H.append("<b>Legs & Stride</b><ul>")
    H.append(f"<li>Average stride length: {m['stride_avg_m']:.2f} m (~{int(round(m['stride_ratio_avg']*100))}% of height). Overall: <b>{m['stride_flag']}</b>.</li>")
    H.append("</ul><b>Balance</b><ul>")
    H.append(f"<li>Knees L/R: {m['sym_knee_flag']} (diff ~{m['sym_knee_diff']:.1f}°). Hips L/R: {m['sym_hip_flag']} (diff ~{m['sym_hip_diff']:.1f}°).</li>")
    H.append("</ul>")
    fixes=[]
    if m['stride_flag']=='Overstride': fixes.append(("Overstriding","Land closer under the hips to reduce braking."))
    if m['stride_flag']=='Short': fixes.append(("Short steps","Push the ground back and let the leg travel behind."))
    if m['fwd_lean_pct'] and m['fwd_lean_pct']>20: fixes.append(("Big forward lean","Stand tall; hinge gently from the ankles, not the waist."))
    if m['sym_knee_flag']=='Uneven' or m['sym_hip_flag']=='Uneven': fixes.append(("Left–right mismatch","Aim for even steps and level hips."))
    if not fixes: fixes=[("Keep it steady","You’re on track—focus on relaxed rhythm and tall posture.")]
    H.append("<h3>3) Top fixes</h3><ul>")
    for name,why in fixes[:3]: H.append(f"<li><b>{name}:</b> {why}</li>")
    H.append("</ul>")
    cues=["Tall and relaxed","Land under hips","Push the ground back","Quick, light steps"]
    H.append("<h3>4) Cues to remember</h3><ul>"); [H.append(f"<li>{c}</li>") for c in cues[:4]]; H.append("</ul>")
    H.append("<h3>5) Do these each week</h3>")
    H.append("<b>Drills (2–3×/week)</b><ul>")
    H.append("<li>A-Skips — 2×20m</li><li>High-knee march — 2×20m</li><li>Ankling — 2×20m</li><li>4–6 relaxed strides (60–80m)</li>")
    H.append("</ul><b>Strength & mobility (2–3×/week)</b><ul>")
    H.append("<li>Glute bridge — 3×12</li><li>Split squat — 3×8/side</li><li>Core (dead bug or plank) — 3×30–40s</li><li>Calf raises — 3×12</li>")
    H.append("</ul>")
    H.append("<h3>6) Simple week plan</h3><ul>")
    H.append("<li><b>Mon:</b> Easy run 20–30 min + A-Skips</li>")
    H.append("<li><b>Wed:</b> Easy run 20–30 min + drills</li>")
    H.append("<li><b>Fri:</b> Easy run 20–30 min + 4×60–80 m strides</li>")
    H.append("<li><b>Tue/Thu/Sat:</b> Strength or mobility 25–35 min</li>")
    H.append("<li><b>Sun:</b> Rest or easy walk</li></ul>")
    H.append("<h3>7) Keep going</h3><ul><li>Small tweaks add up. Stay relaxed, tall, and consistent — you’ve got this!</li></ul>")
    H.append("<div class='small'>Educational guidance only; not medical advice.</div></body></html>")
    return "\n".join(H)

# -------- Core processing --------
def process_video(video_path, out_prefix, units_metric, height_val, weight_val, slow_factor):
    # height to meters
    if units_metric: height_m=float(height_val)/100.0
    else:            height_m=float(height_val)*2.54/100.0

    cap=cv2.VideoCapture(video_path)
    if not cap.isOpened(): raise RuntimeError(f"Could not open video: {video_path}")
    total_frames=int(cap.get(cv2.CAP_PROP_FRAME_COUNT)) or 0
    fps=cap.get(cv2.CAP_PROP_FPS) or 30.0
    W=int(cap.get(cv2.CAP_PROP_FRAME_WIDTH)); H=int(cap.get(cv2.CAP_PROP_FRAME_HEIGHT))

    norm_writer, norm_path = make_writer(f"{out_prefix}_normal", fps, (W,H))
    slow_fps=max(1.0, fps/max(1e-6, slow_factor))
    slow_writer, slow_path = make_writer(f"{out_prefix}_slow", slow_fps, (W,H))

    timestamp=datetime.now().strftime("%Y-%m-%d %H:%M")

    # rolling windows (for stable labels & confidence)
    win = max(12, int(fps*LABEL_WINDOW_SEC))
    label_hist = {k: deque(maxlen=win) for k in ["Elbow_R","Elbow_L","Knee_R","Knee_L","Hip_R","Hip_L"]}
    conf_hist  = deque(maxlen=win)
    stride_hist= deque(maxlen=win)
    ratio_hist = deque(maxlen=win)
    fwd_flags  = []

    smoother = LandmarkSmootherForMetrics(n_points=33, freq=fps)
    headstab = HeadStabilizer(n_points=33, freq=fps)
    memory   = LandmarkMemory(hold_frames=max(1,int(fps*MIN_DROPOUT_HOLD_SEC)))

    pose = mp_pose.Pose(static_image_mode=False, model_complexity=2, smooth_landmarks=False,
                        min_detection_confidence=0.6, min_tracking_confidence=0.6)

    frame_idx=0; start=time.time()
    try:
        while True:
            ok,frame=cap.read()
            if not ok: break
            frame_idx+=1

            rgb=cv2.cvtColor(frame,cv2.COLOR_BGR2RGB)
            res=pose.process(rgb)

            lm_raw=None
            if res.pose_landmarks:
                lm_raw = res.pose_landmarks.landmark
                memory.put(lm_raw)
            else:
                lm_raw = memory.get()

            annotated=frame.copy()
            top_right_text=None

            if lm_raw:
                lm_smooth = smoother.update(lm_raw)
                def P_raw(i): return [lm_raw[i].x*W, lm_raw[i].y*H]
                def V_raw(i): return lm_raw[i].visibility
                def P(i):     return [lm_smooth[i].x*W, lm_smooth[i].y*H]
                def V(i):     return lm_smooth[i].visibility

                idxs=[mp_pose.PoseLandmark.RIGHT_SHOULDER.value, mp_pose.PoseLandmark.RIGHT_ELBOW.value,
                      mp_pose.PoseLandmark.RIGHT_WRIST.value,   mp_pose.PoseLandmark.LEFT_SHOULDER.value,
                      mp_pose.PoseLandmark.LEFT_ELBOW.value,    mp_pose.PoseLandmark.LEFT_WRIST.value,
                      mp_pose.PoseLandmark.RIGHT_HIP.value,     mp_pose.PoseLandmark.RIGHT_KNEE.value,
                      mp_pose.PoseLandmark.RIGHT_ANKLE.value,   mp_pose.PoseLandmark.LEFT_HIP.value,
                      mp_pose.PoseLandmark.LEFT_KNEE.value,     mp_pose.PoseLandmark.LEFT_ANKLE.value]
                conf_frame=float(np.mean([V_raw(i) for i in idxs]))
                conf_hist.append(conf_frame)
                conf_avg=float(np.mean(conf_hist))
                top_right_text=f"Confidence: {confidence_word(conf_avg)}"

                R_SH,R_EL,R_WR = mp_pose.PoseLandmark.RIGHT_SHOULDER.value, mp_pose.PoseLandmark.RIGHT_ELBOW.value, mp_pose.PoseLandmark.RIGHT_WRIST.value
                L_SH,L_EL,L_WR = mp_pose.PoseLandmark.LEFT_SHOULDER.value,  mp_pose.PoseLandmark.LEFT_ELBOW.value,  mp_pose.PoseLandmark.LEFT_WRIST.value
                R_HP,R_KN,R_AN = mp_pose.PoseLandmark.RIGHT_HIP.value,      mp_pose.PoseLandmark.RIGHT_KNEE.value,  mp_pose.PoseLandmark.RIGHT_ANKLE.value
                L_HP,L_KN,L_AN = mp_pose.PoseLandmark.LEFT_HIP.value,       mp_pose.PoseLandmark.LEFT_KNEE.value,   mp_pose.PoseLandmark.LEFT_ANKLE.value

                def label_for(A,B,C):
                    if min(V(A),V(B),V(C)) < VIS_THRESH: return None
                    ang=calculate_angle(P(A),P(B),P(C))
                    lbl,_=sev_label(ang); return lbl
                frame_labels={
                    "Elbow_R": label_for(R_SH,R_EL,R_WR),
                    "Elbow_L": label_for(L_SH,L_EL,L_WR),
                    "Knee_R":  label_for(R_HP,R_KN,R_AN),
                    "Knee_L":  label_for(L_HP,L_KN,L_AN),
                    "Hip_R":   label_for(R_SH,R_HP,R_KN),
                    "Hip_L":   label_for(L_SH,L_HP,L_KN)
                }
                for k,v in frame_labels.items():
                    if v: label_hist[k].append(v)

                # ---- STRIDE (per-frame estimate for overlay) ----
                r_sh_raw, r_an_raw, l_an_raw = P_raw(R_SH), P_raw(R_AN), P_raw(L_AN)
                body_px = np.linalg.norm(np.array(r_sh_raw)-np.array(r_an_raw))
                stride_m=0.0
                if body_px>1e-6:
                    px_per_m = body_px / max(1e-6, height_m)
                    r_an, l_an = P(R_AN), P(L_AN)
                    ankle_dist_px=float(np.linalg.norm(np.array(r_an)-np.array(l_an)))
                    stride_m=ankle_dist_px/px_per_m
                stride_hist.append(max(0.0,stride_m))
                ratio_hist.append((stride_m/height_m) if height_m>1e-6 else 0.0)

                # forward-lean %
                sh_mid = ((lm_smooth[R_SH].x + lm_smooth[L_SH].x)/2.0,
                          (lm_smooth[R_SH].y + lm_smooth[L_SH].y)/2.0)
                hp_mid = ((lm_smooth[R_HP].x + lm_smooth[L_HP].x)/2.0,
                          (lm_smooth[R_HP].y + lm_smooth[L_HP].y)/2.0)
                dx = (sh_mid[0]-hp_mid[0]); dy = (sh_mid[1]-hp_mid[1])
                angle_from_vertical = abs(math.degrees(math.atan2(abs(dx), abs(dy)+1e-6)))
                fwd_flags.append(1 if angle_from_vertical>15 else 0)

                # ==== DRAWING ====
                head_override = headstab.override(lm_raw, HEAD_IDS)
                draw_skeleton(annotated, lm_raw, W, H, head_override=head_override, visibility_thresh=VIS_THRESH)
                if (lm_raw[R_AN].visibility>VIS_THRESH) and (lm_raw[L_AN].visibility>VIS_THRESH):
                    ra=(int(lm_raw[R_AN].x*W), int(lm_raw[R_AN].y*H))
                    la=(int(lm_raw[L_AN].x*W), int(lm_raw[L_AN].y*H))
                    cv2.line(annotated, ra, la, COLOR_CYAN, max(2, W//400), LINE)

                def maj(tag):
                    dq=label_hist[tag]
                    if not dq: return "—"
                    c=Counter(dq); order={"Good":3,"Improve":2,"Fix":1}
                    return sorted(c.items(), key=lambda kv:(kv[1], order.get(kv[0],0)), reverse=True)[0][0]
                items=[(f"Stride length: {stride_m:.2f} m (est.)", COLOR_CYAN)]
                for tag in ["Hip_R","Hip_L","Knee_R","Knee_L","Elbow_R","Elbow_L"]:
                    lbl=maj(tag); col={"Good":COLOR_GREEN,"Improve":COLOR_AMBER,"Fix":COLOR_RED}.get(lbl, COLOR_BORDER)
                    items.append((f"{tag.replace('_',' ')}: {lbl}", col))
                draw_bottom_labels(annotated, items, fs=0.9)

            draw_box(annotated,"Real-Time (Simple)",(18,18),fs=0.9,th=2)
            if top_right_text:
                w,_=measure_box(top_right_text,fs=0.7,th=2)
                draw_box(annotated, top_right_text, (max(18, W-w-18), 18), fs=0.7, th=2)

            norm_writer.write(annotated)
            sm=annotated.copy()
            draw_box(sm,f"Slow Motion ({slow_factor}{TIMES})",(18,18),fs=0.9,th=2)
            slow_writer.write(sm)

    finally:
        cap.release(); norm_writer.release(); slow_writer.release()

    stride_avg = float(np.mean(stride_hist)) if stride_hist else 0.0
    ratio_avg  = float(np.mean(ratio_hist))  if ratio_hist  else 0.0
    if   ratio_avg < 0.55: stride_flag="Short"
    elif ratio_avg > 1.00: stride_flag="Overstride"
    else:                  stride_flag="Good"

    def balance(histL, histR):
        mapv={"Good":0,"Improve":5,"Fix":10}
        l=np.mean([mapv.get(x,0) for x in histL]) if histL else 0
        r=np.mean([mapv.get(x,0) for x in histR]) if histR else 0
        diff=abs(r-l); flag="Even" if diff<3 else ("Slight" if diff<7 else "Uneven")
        return diff,flag
    kd,kflag=balance(label_hist["Knee_L"], label_hist["Knee_R"])
    hd,hflag=balance(label_hist["Hip_L"],  label_hist["Hip_R"])

    conf_avg = float(np.mean(conf_hist)) if conf_hist else 0.8
    fwd_pct  = (100.0*sum(fwd_flags)/len(fwd_flags)) if fwd_flags else None

    metrics = {
        "stride_avg_m": stride_avg,
        "stride_ratio_avg": ratio_avg,
        "stride_flag": stride_flag,
        "sym_knee_diff": kd, "sym_knee_flag": kflag,
        "sym_hip_diff":  hd, "sym_hip_flag":  hflag,
        "fwd_lean_pct": fwd_pct,
        "conf_word": confidence_word(conf_avg),
    }
    html_report = compose_simple_report({"timestamp": datetime.now().strftime("%Y-%m-%d %H:%M")}, metrics)
    html_path   = f"{out_prefix}_report.html"
    with open(html_path,"w") as f: f.write(html_report)

    return {"normal":norm_path,"slow":slow_path,"report":html_path}

def make_zip(outs, bundle_name="outputs"):
    files3=[outs['normal'], outs['slow'], outs['report']]
    files3=[p for p in files3 if os.path.exists(p) and os.path.getsize(p)>128]
    if not files3:
        return None
    zip_path=os.path.join(OUTPUT_DIR, f"{bundle_name}_outputs.zip")
    with zipfile.ZipFile(zip_path,'w',compression=zipfile.ZIP_DEFLATED) as z:
        for p in files3: z.write(p, arcname=os.path.basename(p))
    return zip_path