Spaces:
Running
Running
File size: 19,894 Bytes
83c80f5 cd090ec 83c80f5 cd090ec 83c80f5 cd090ec 83c80f5 cd090ec 83c80f5 cd090ec 83c80f5 cd090ec 83c80f5 cd090ec 83c80f5 cd090ec 83c80f5 cd090ec 83c80f5 cd090ec 83c80f5 cd090ec 83c80f5 cd090ec 83c80f5 cd090ec 83c80f5 cd090ec 83c80f5 cd090ec 83c80f5 cd090ec 83c80f5 cd090ec 83c80f5 cd090ec 83c80f5 cd090ec 83c80f5 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 |
# analyzer.py
import os, time, zipfile, numpy as np, cv2, math, pathlib
from datetime import datetime
from collections import deque, Counter
import mediapipe as mp
# -------- Paths --------
OUTPUT_DIR = "/tmp/form_analysis"
os.makedirs(OUTPUT_DIR, exist_ok=True)
# -------- Styles & constants --------
mp_pose = mp.solutions.pose
FONT=cv2.FONT_HERSHEY_SIMPLEX; LINE=cv2.LINE_AA
COLOR_TEXT=(255,255,255); COLOR_BOX=(30,30,30); COLOR_BORDER=(80,80,80)
COLOR_BONE=(255,220,180); COLOR_BONE_SHADOW=(35,35,35)
COLOR_JOINT=(255,80,80); COLOR_JOINT_EDGE=(255,255,255)
COLOR_GREEN=(80,190,80); COLOR_AMBER=(80,170,255); COLOR_RED=(40,60,255)
COLOR_CYAN=(255,255,0) # ankle line + stride label border (BGR)
TIMES="x"; VIS_THRESH=0.60
LABEL_WINDOW_SEC=1.5
MIN_DROPOUT_HOLD_SEC=0.07
# -------- Drawing helpers --------
def measure_box(text, fs=0.9, th=2, pad_x=12, pad_y=10):
(w,h),_=cv2.getTextSize(text,FONT,fs,th)
return w+2*pad_x, h+2*pad_y
def draw_box(img, text, xy, border_color=COLOR_BORDER, fs=0.9, th=2, alpha=0.82):
x,y=xy; w,h=measure_box(text,fs,th)
overlay=img.copy()
cv2.rectangle(overlay,(x,y),(x+w,y+h),COLOR_BOX,-1)
cv2.addWeighted(overlay,alpha,img,1-alpha,0,img)
cv2.rectangle(img,(x,y),(x+w,y+h),border_color,2,LINE)
(tw,thh),_=cv2.getTextSize(text,FONT,fs,th)
cv2.putText(img,text,(x+12,y+10+thh),FONT,fs,COLOR_TEXT,th,LINE)
return (x,y,w,h)
def draw_bottom_labels(img, items, gap=10, margin=16, fs=0.9):
H,W=img.shape[:2]
x=margin; y=H-margin
row_h=0
rows=[[]]; widths=[margin]
for text,color in items:
w,h=measure_box(text,fs)
if widths[-1]+w+margin>W and rows[-1]:
rows.append([]); widths.append(margin)
rows[-1].append((text,color,w,h))
widths[-1]+=w+gap
row_h=max(row_h,h)
for row in rows[::-1]:
x=margin; y-=row_h+4
for text,color,w,h in row:
draw_box(img,text,(x,y),border_color=color,fs=fs)
x+=w+gap
# -------- Skeleton (raw for zero lag; slight head stabilization) --------
POSE_EDGES = list(mp_pose.POSE_CONNECTIONS)
HEAD_IDS = [
mp_pose.PoseLandmark.NOSE.value,
mp_pose.PoseLandmark.LEFT_EYE.value, mp_pose.PoseLandmark.RIGHT_EYE.value,
mp_pose.PoseLandmark.LEFT_EAR.value, mp_pose.PoseLandmark.RIGHT_EAR.value,
mp_pose.PoseLandmark.MOUTH_LEFT.value, mp_pose.PoseLandmark.MOUTH_RIGHT.value
]
def draw_skeleton(img, lm_raw, W, H, head_override=None, visibility_thresh=0.5):
t_line = max(2, W//360); t_shadow = t_line+2
r_joint = max(3, W//190); r_edge = r_joint+2
pts={}
for i,p in enumerate(lm_raw):
if p.visibility<visibility_thresh: continue
x = int((head_override.get(i)[0] if (head_override and i in head_override) else p.x)*W)
y = int((head_override.get(i)[1] if (head_override and i in head_override) else p.y)*H)
pts[i]=(x,y)
for a,b in POSE_EDGES:
if a in pts and b in pts:
ax,ay=pts[a]; bx,by=pts[b]
cv2.line(img,(ax,ay),(bx,by),COLOR_BONE_SHADOW,t_shadow,LINE)
cv2.line(img,(ax,ay),(bx,by),COLOR_BONE,t_line,LINE)
for i,(x,y) in pts.items():
cv2.circle(img,(x,y),r_edge,COLOR_JOINT_EDGE,-1,LINE)
cv2.circle(img,(x,y),r_joint,COLOR_JOINT,-1,LINE)
# -------- Math & smoothing --------
def calculate_angle(a,b,c):
a,b,c=np.array(a,float),np.array(b,float),np.array(c,float)
ang=abs(np.degrees(np.arctan2(c[1]-b[1],c[0]-b[0])-np.arctan2(a[1]-b[1],a[0]-b[0])))
return int(round(360-ang if ang>180 else ang))
def sev_label(angle):
if angle<30 or angle>160: return "Fix",COLOR_RED
if angle<50 or angle>140: return "Improve",COLOR_AMBER
return "Good",COLOR_GREEN
def confidence_word(avgv): return "High" if avgv>=0.85 else ("Medium" if avgv>=0.7 else "Low")
class LowPass:
def __init__(self): self.y=None
def filt(self,x,a): self.y=x if self.y is None else (a*x+(1-a)*self.y); return self.y
def alpha_from_cutoff(cutoff,freq):
if cutoff<=0: return 1.0
tau=1.0/(2*np.pi*cutoff); return 1.0/(1.0+tau*freq)
class OneEuro:
def __init__(self,freq,min_cutoff=1.3,beta=0.25,d_cutoff=1.0):
self.freq=freq; self.min_cut=min_cutoff; self.beta=beta; self.d_cut=d_cutoff
self.dx=LowPass(); self.x=LowPass(); self.last=None
def filt(self,x):
if self.last is None: self.last=x
dx=(x-self.last)*self.freq
edx=self.dx.filt(dx, alpha_from_cutoff(self.d_cut, self.freq))
cutoff=self.min_cut + self.beta*abs(edx)
out=self.x.filt(x, alpha_from_cutoff(cutoff, self.freq))
self.last=out; return out
class LandmarkSmootherForMetrics:
def __init__(self,n_points=33,freq=30.0):
self.fx=[OneEuro(freq,1.3,0.25,1.0) for _ in range(n_points)]
self.fy=[OneEuro(freq,1.3,0.25,1.0) for _ in range(n_points)]
self.fv=[OneEuro(freq,1.5,0.05,1.0) for _ in range(n_points)]
def update(self, raw):
arr=np.array([[p.x,p.y,p.visibility] for p in raw],dtype=np.float32)
class P: pass
out=[]
for i,(x,y,v) in enumerate(arr):
p=P(); p.x=float(self.fx[i].filt(x)); p.y=float(self.fy[i].filt(y))
p.z=0.0; p.visibility=float(self.fv[i].filt(v)); out.append(p)
return out
class HeadStabilizer:
def __init__(self, n_points=33, freq=30.0):
self.fx=[OneEuro(freq,1.0,0.15,1.0) for _ in range(n_points)]
self.fy=[OneEuro(freq,1.0,0.15,1.0) for _ in range(n_points)]
def override(self, raw, use_ids):
out={}
for i in use_ids:
rx,ry = raw[i].x, raw[i].y
sx = float(self.fx[i].filt(rx))
sy = float(self.fy[i].filt(ry))
out[i] = (0.7*rx + 0.3*sx, 0.7*ry + 0.3*sy)
return out
class LandmarkMemory:
def __init__(self, hold_frames=2): self.last=None; self.hold=0; self.hold_frames=hold_frames
def put(self,lm): self.last=lm; self.hold=self.hold_frames
def get(self):
if self.hold>0: self.hold-=1; return self.last
return None
# -------- Video writer --------
def make_writer(base_no_ext, fps, size):
W,H=size
path=f"{base_no_ext}.mp4"
four=cv2.VideoWriter_fourcc(*'mp4v')
vw=cv2.VideoWriter(path,four,fps,(W,H))
if vw.isOpened(): return vw,path
vw.release()
path=f"{base_no_ext}.avi"
four=cv2.VideoWriter_fourcc(*'MJPG')
vw=cv2.VideoWriter(path,four,fps,(W,H))
if vw.isOpened(): return vw,path
raise RuntimeError("VideoWriter failed for both MP4 and AVI")
# -------- Simple coach report --------
def compose_simple_report(meta, m):
H=[]
H.append("<html><head><meta charset='utf-8'><title>Running Form Report</title>")
H.append("<style>body{font-family:Arial,Helvetica,sans-serif;line-height:1.5;} h2,h3{margin:.5em 0;} ul{margin:.3em 0 .8em 1.2em;} li{margin:.25em 0;} .small{color:#666;font-size:12px}</style></head><body>")
H.append(f"<h2>Running Form Report</h2><div class='small'>Created: {meta['timestamp']} • Confidence: {m['conf_word']}</div>")
H.append("<h3>1) Introduction</h3><ul>")
H.append("<li>Nice work getting this filmed — great base to build from.</li>")
if m['stride_flag']=='Good': H.append("<li>Your step length looks natural for your height.</li>")
H.append("<li>Overall rhythm and posture are coming along.</li>")
H.append("</ul>")
H.append("<h3>2) What we saw</h3>")
H.append("<b>Posture</b><ul>")
if m['fwd_lean_pct'] is not None:
H.append(f"<li>Forward lean in ~{int(round(m['fwd_lean_pct']))}% of frames. Keep tall and hinge gently from the ankles.</li>")
else:
H.append("<li>Posture looked steady. Stay tall and relaxed.</li>")
H.append("</ul><b>Arms</b><ul><li>Hands by pockets, swing straight forward/back. Relax the shoulders.</li></ul>")
H.append("<b>Legs & Stride</b><ul>")
H.append(f"<li>Average stride length: {m['stride_avg_m']:.2f} m (~{int(round(m['stride_ratio_avg']*100))}% of height). Overall: <b>{m['stride_flag']}</b>.</li>")
H.append("</ul><b>Balance</b><ul>")
H.append(f"<li>Knees L/R: {m['sym_knee_flag']} (diff ~{m['sym_knee_diff']:.1f}°). Hips L/R: {m['sym_hip_flag']} (diff ~{m['sym_hip_diff']:.1f}°).</li>")
H.append("</ul>")
fixes=[]
if m['stride_flag']=='Overstride': fixes.append(("Overstriding","Land closer under the hips to reduce braking."))
if m['stride_flag']=='Short': fixes.append(("Short steps","Push the ground back and let the leg travel behind."))
if m['fwd_lean_pct'] and m['fwd_lean_pct']>20: fixes.append(("Big forward lean","Stand tall; hinge gently from the ankles, not the waist."))
if m['sym_knee_flag']=='Uneven' or m['sym_hip_flag']=='Uneven': fixes.append(("Left–right mismatch","Aim for even steps and level hips."))
if not fixes: fixes=[("Keep it steady","You’re on track—focus on relaxed rhythm and tall posture.")]
H.append("<h3>3) Top fixes</h3><ul>")
for name,why in fixes[:3]: H.append(f"<li><b>{name}:</b> {why}</li>")
H.append("</ul>")
cues=["Tall and relaxed","Land under hips","Push the ground back","Quick, light steps"]
H.append("<h3>4) Cues to remember</h3><ul>"); [H.append(f"<li>{c}</li>") for c in cues[:4]]; H.append("</ul>")
H.append("<h3>5) Do these each week</h3>")
H.append("<b>Drills (2–3×/week)</b><ul>")
H.append("<li>A-Skips — 2×20m</li><li>High-knee march — 2×20m</li><li>Ankling — 2×20m</li><li>4–6 relaxed strides (60–80m)</li>")
H.append("</ul><b>Strength & mobility (2–3×/week)</b><ul>")
H.append("<li>Glute bridge — 3×12</li><li>Split squat — 3×8/side</li><li>Core (dead bug or plank) — 3×30–40s</li><li>Calf raises — 3×12</li>")
H.append("</ul>")
H.append("<h3>6) Simple week plan</h3><ul>")
H.append("<li><b>Mon:</b> Easy run 20–30 min + A-Skips</li>")
H.append("<li><b>Wed:</b> Easy run 20–30 min + drills</li>")
H.append("<li><b>Fri:</b> Easy run 20–30 min + 4×60–80 m strides</li>")
H.append("<li><b>Tue/Thu/Sat:</b> Strength or mobility 25–35 min</li>")
H.append("<li><b>Sun:</b> Rest or easy walk</li></ul>")
H.append("<h3>7) Keep going</h3><ul><li>Small tweaks add up. Stay relaxed, tall, and consistent — you’ve got this!</li></ul>")
H.append("<div class='small'>Educational guidance only; not medical advice.</div></body></html>")
return "\n".join(H)
# -------- Core processing --------
def process_video(video_path, out_prefix, units_metric, height_val, weight_val, slow_factor):
# height to meters
if units_metric: height_m=float(height_val)/100.0
else: height_m=float(height_val)*2.54/100.0
cap=cv2.VideoCapture(video_path)
if not cap.isOpened(): raise RuntimeError(f"Could not open video: {video_path}")
total_frames=int(cap.get(cv2.CAP_PROP_FRAME_COUNT)) or 0
fps=cap.get(cv2.CAP_PROP_FPS) or 30.0
W=int(cap.get(cv2.CAP_PROP_FRAME_WIDTH)); H=int(cap.get(cv2.CAP_PROP_FRAME_HEIGHT))
norm_writer, norm_path = make_writer(f"{out_prefix}_normal", fps, (W,H))
slow_fps=max(1.0, fps/max(1e-6, slow_factor))
slow_writer, slow_path = make_writer(f"{out_prefix}_slow", slow_fps, (W,H))
timestamp=datetime.now().strftime("%Y-%m-%d %H:%M")
# rolling windows (for stable labels & confidence)
win = max(12, int(fps*LABEL_WINDOW_SEC))
label_hist = {k: deque(maxlen=win) for k in ["Elbow_R","Elbow_L","Knee_R","Knee_L","Hip_R","Hip_L"]}
conf_hist = deque(maxlen=win)
stride_hist= deque(maxlen=win)
ratio_hist = deque(maxlen=win)
fwd_flags = []
smoother = LandmarkSmootherForMetrics(n_points=33, freq=fps)
headstab = HeadStabilizer(n_points=33, freq=fps)
memory = LandmarkMemory(hold_frames=max(1,int(fps*MIN_DROPOUT_HOLD_SEC)))
pose = mp_pose.Pose(static_image_mode=False, model_complexity=2, smooth_landmarks=False,
min_detection_confidence=0.6, min_tracking_confidence=0.6)
frame_idx=0; start=time.time()
try:
while True:
ok,frame=cap.read()
if not ok: break
frame_idx+=1
rgb=cv2.cvtColor(frame,cv2.COLOR_BGR2RGB)
res=pose.process(rgb)
lm_raw=None
if res.pose_landmarks:
lm_raw = res.pose_landmarks.landmark
memory.put(lm_raw)
else:
lm_raw = memory.get()
annotated=frame.copy()
top_right_text=None
if lm_raw:
lm_smooth = smoother.update(lm_raw)
def P_raw(i): return [lm_raw[i].x*W, lm_raw[i].y*H]
def V_raw(i): return lm_raw[i].visibility
def P(i): return [lm_smooth[i].x*W, lm_smooth[i].y*H]
def V(i): return lm_smooth[i].visibility
idxs=[mp_pose.PoseLandmark.RIGHT_SHOULDER.value, mp_pose.PoseLandmark.RIGHT_ELBOW.value,
mp_pose.PoseLandmark.RIGHT_WRIST.value, mp_pose.PoseLandmark.LEFT_SHOULDER.value,
mp_pose.PoseLandmark.LEFT_ELBOW.value, mp_pose.PoseLandmark.LEFT_WRIST.value,
mp_pose.PoseLandmark.RIGHT_HIP.value, mp_pose.PoseLandmark.RIGHT_KNEE.value,
mp_pose.PoseLandmark.RIGHT_ANKLE.value, mp_pose.PoseLandmark.LEFT_HIP.value,
mp_pose.PoseLandmark.LEFT_KNEE.value, mp_pose.PoseLandmark.LEFT_ANKLE.value]
conf_frame=float(np.mean([V_raw(i) for i in idxs]))
conf_hist.append(conf_frame)
conf_avg=float(np.mean(conf_hist))
top_right_text=f"Confidence: {confidence_word(conf_avg)}"
R_SH,R_EL,R_WR = mp_pose.PoseLandmark.RIGHT_SHOULDER.value, mp_pose.PoseLandmark.RIGHT_ELBOW.value, mp_pose.PoseLandmark.RIGHT_WRIST.value
L_SH,L_EL,L_WR = mp_pose.PoseLandmark.LEFT_SHOULDER.value, mp_pose.PoseLandmark.LEFT_ELBOW.value, mp_pose.PoseLandmark.LEFT_WRIST.value
R_HP,R_KN,R_AN = mp_pose.PoseLandmark.RIGHT_HIP.value, mp_pose.PoseLandmark.RIGHT_KNEE.value, mp_pose.PoseLandmark.RIGHT_ANKLE.value
L_HP,L_KN,L_AN = mp_pose.PoseLandmark.LEFT_HIP.value, mp_pose.PoseLandmark.LEFT_KNEE.value, mp_pose.PoseLandmark.LEFT_ANKLE.value
def label_for(A,B,C):
if min(V(A),V(B),V(C)) < VIS_THRESH: return None
ang=calculate_angle(P(A),P(B),P(C))
lbl,_=sev_label(ang); return lbl
frame_labels={
"Elbow_R": label_for(R_SH,R_EL,R_WR),
"Elbow_L": label_for(L_SH,L_EL,L_WR),
"Knee_R": label_for(R_HP,R_KN,R_AN),
"Knee_L": label_for(L_HP,L_KN,L_AN),
"Hip_R": label_for(R_SH,R_HP,R_KN),
"Hip_L": label_for(L_SH,L_HP,L_KN)
}
for k,v in frame_labels.items():
if v: label_hist[k].append(v)
# ---- STRIDE (per-frame estimate for overlay) ----
r_sh_raw, r_an_raw, l_an_raw = P_raw(R_SH), P_raw(R_AN), P_raw(L_AN)
body_px = np.linalg.norm(np.array(r_sh_raw)-np.array(r_an_raw))
stride_m=0.0
if body_px>1e-6:
px_per_m = body_px / max(1e-6, height_m)
r_an, l_an = P(R_AN), P(L_AN)
ankle_dist_px=float(np.linalg.norm(np.array(r_an)-np.array(l_an)))
stride_m=ankle_dist_px/px_per_m
stride_hist.append(max(0.0,stride_m))
ratio_hist.append((stride_m/height_m) if height_m>1e-6 else 0.0)
# forward-lean %
sh_mid = ((lm_smooth[R_SH].x + lm_smooth[L_SH].x)/2.0,
(lm_smooth[R_SH].y + lm_smooth[L_SH].y)/2.0)
hp_mid = ((lm_smooth[R_HP].x + lm_smooth[L_HP].x)/2.0,
(lm_smooth[R_HP].y + lm_smooth[L_HP].y)/2.0)
dx = (sh_mid[0]-hp_mid[0]); dy = (sh_mid[1]-hp_mid[1])
angle_from_vertical = abs(math.degrees(math.atan2(abs(dx), abs(dy)+1e-6)))
fwd_flags.append(1 if angle_from_vertical>15 else 0)
# ==== DRAWING ====
head_override = headstab.override(lm_raw, HEAD_IDS)
draw_skeleton(annotated, lm_raw, W, H, head_override=head_override, visibility_thresh=VIS_THRESH)
if (lm_raw[R_AN].visibility>VIS_THRESH) and (lm_raw[L_AN].visibility>VIS_THRESH):
ra=(int(lm_raw[R_AN].x*W), int(lm_raw[R_AN].y*H))
la=(int(lm_raw[L_AN].x*W), int(lm_raw[L_AN].y*H))
cv2.line(annotated, ra, la, COLOR_CYAN, max(2, W//400), LINE)
def maj(tag):
dq=label_hist[tag]
if not dq: return "—"
c=Counter(dq); order={"Good":3,"Improve":2,"Fix":1}
return sorted(c.items(), key=lambda kv:(kv[1], order.get(kv[0],0)), reverse=True)[0][0]
items=[(f"Stride length: {stride_m:.2f} m (est.)", COLOR_CYAN)]
for tag in ["Hip_R","Hip_L","Knee_R","Knee_L","Elbow_R","Elbow_L"]:
lbl=maj(tag); col={"Good":COLOR_GREEN,"Improve":COLOR_AMBER,"Fix":COLOR_RED}.get(lbl, COLOR_BORDER)
items.append((f"{tag.replace('_',' ')}: {lbl}", col))
draw_bottom_labels(annotated, items, fs=0.9)
draw_box(annotated,"Real-Time (Simple)",(18,18),fs=0.9,th=2)
if top_right_text:
w,_=measure_box(top_right_text,fs=0.7,th=2)
draw_box(annotated, top_right_text, (max(18, W-w-18), 18), fs=0.7, th=2)
norm_writer.write(annotated)
sm=annotated.copy()
draw_box(sm,f"Slow Motion ({slow_factor}{TIMES})",(18,18),fs=0.9,th=2)
slow_writer.write(sm)
finally:
cap.release(); norm_writer.release(); slow_writer.release()
stride_avg = float(np.mean(stride_hist)) if stride_hist else 0.0
ratio_avg = float(np.mean(ratio_hist)) if ratio_hist else 0.0
if ratio_avg < 0.55: stride_flag="Short"
elif ratio_avg > 1.00: stride_flag="Overstride"
else: stride_flag="Good"
def balance(histL, histR):
mapv={"Good":0,"Improve":5,"Fix":10}
l=np.mean([mapv.get(x,0) for x in histL]) if histL else 0
r=np.mean([mapv.get(x,0) for x in histR]) if histR else 0
diff=abs(r-l); flag="Even" if diff<3 else ("Slight" if diff<7 else "Uneven")
return diff,flag
kd,kflag=balance(label_hist["Knee_L"], label_hist["Knee_R"])
hd,hflag=balance(label_hist["Hip_L"], label_hist["Hip_R"])
conf_avg = float(np.mean(conf_hist)) if conf_hist else 0.8
fwd_pct = (100.0*sum(fwd_flags)/len(fwd_flags)) if fwd_flags else None
metrics = {
"stride_avg_m": stride_avg,
"stride_ratio_avg": ratio_avg,
"stride_flag": stride_flag,
"sym_knee_diff": kd, "sym_knee_flag": kflag,
"sym_hip_diff": hd, "sym_hip_flag": hflag,
"fwd_lean_pct": fwd_pct,
"conf_word": confidence_word(conf_avg),
}
html_report = compose_simple_report({"timestamp": datetime.now().strftime("%Y-%m-%d %H:%M")}, metrics)
html_path = f"{out_prefix}_report.html"
with open(html_path,"w") as f: f.write(html_report)
return {"normal":norm_path,"slow":slow_path,"report":html_path}
def make_zip(outs, bundle_name="outputs"):
files3=[outs['normal'], outs['slow'], outs['report']]
files3=[p for p in files3 if os.path.exists(p) and os.path.getsize(p)>128]
if not files3:
return None
zip_path=os.path.join(OUTPUT_DIR, f"{bundle_name}_outputs.zip")
with zipfile.ZipFile(zip_path,'w',compression=zipfile.ZIP_DEFLATED) as z:
for p in files3: z.write(p, arcname=os.path.basename(p))
return zip_path
|