File size: 2,818 Bytes
a3baa6a
 
07e6cbc
 
 
 
 
 
 
a3baa6a
f55bfeb
 
 
07e6cbc
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a3baa6a
07e6cbc
 
 
f55bfeb
07e6cbc
 
 
 
 
 
 
 
 
 
 
f55bfeb
07e6cbc
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a3baa6a
f55bfeb
 
a3baa6a
07e6cbc
 
 
 
 
a3baa6a
f55bfeb
22e3e2e
07e6cbc
a3baa6a
 
07e6cbc
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
import gradio as gr
import torch
import logging
from transformers import AutoModelForCausalLM, AutoTokenizer, TextIteratorStreamer
from threading import Thread

# Set up logging
logging.basicConfig(level=logging.INFO)
logger = logging.getLogger(__name__)

# Load model & tokenizer
MODEL_NAME = "ubiodee/Cardano_plutus"

try:
    logger.info("Loading tokenizer...")
    tokenizer = AutoTokenizer.from_pretrained(MODEL_NAME)
    logger.info("Loading model...")
    model = AutoModelForCausalLM.from_pretrained(
        MODEL_NAME,
        device_map="auto",
        torch_dtype=torch.float16,
        low_cpu_mem_usage=True
    )
    model.eval()
    logger.info("Model and tokenizer loaded successfully.")
except Exception as e:
    logger.error(f"Error loading model or tokenizer: {str(e)}")
    raise

# Prompt template to guide the model (simple, since no model card details)
def format_prompt(user_prompt):
    return f"User: {user_prompt}\nAssistant:"

# Response function with proper streaming
def generate_response(user_prompt):
    try:
        logger.info("Processing prompt...")
        prompt = format_prompt(user_prompt)
        inputs = tokenizer(prompt, return_tensors="pt").to(model.device)
        
        # Use streamer for token-by-token generation
        streamer = TextIteratorStreamer(tokenizer, skip_prompt=True, skip_special_tokens=True)
        
        generation_kwargs = {
            **inputs,
            "streamer": streamer,
            "max_new_tokens": 300,  # Increased slightly for completeness
            "do_sample": True,      # Revert to sampling to avoid repetition
            "temperature": 0.1,
            "top_p": 0.1,
            "eos_token_id": tokenizer.eos_token_id,
            "pad_token_id": tokenizer.pad_token_id
        }
        
        # Run generation in a separate thread to avoid blocking
        thread = Thread(target=model.generate, kwargs=generation_kwargs)
        thread.start()
        
        generated_text = ""
        for new_text in streamer:
            generated_text += new_text
            yield generated_text.strip()
        
        logger.info("Response generated successfully.")
    except Exception as e:
        logger.error(f"Error during generation: {str(e)}")
        yield f"Error: {str(e)}"

# Gradio UI
demo = gr.Interface(
    fn=generate_response,
    inputs=gr.Textbox(
        label="Enter your prompt",
        lines=4,
        placeholder="Ask about Plutus or Cardano..."
    ),
    outputs=gr.Textbox(label="Model Response"),
    title="Cardano Plutus AI Assistant",
    description="Your Cardano AI Builder..",
    allow_flagging="never"
)

# Launch the app
try:
    logger.info("Launching Gradio interface...")
    demo.launch()
except Exception as e:
    logger.error(f"Error launching Gradio: {str(e)}")
    raise