| import os | |
| import torch | |
| from torch import nn | |
| from torch.nn import functional as F | |
| from torch.autograd import Function | |
| module_path = os.path.dirname(__file__) | |
| class FusedLeakyReLU(nn.Module): | |
| def __init__(self, channel, negative_slope=0.2, scale=2 ** 0.5): | |
| super().__init__() | |
| self.bias = nn.Parameter(torch.zeros(channel)) | |
| self.negative_slope = negative_slope | |
| self.scale = scale | |
| def forward(self, input): | |
| return fused_leaky_relu(input, self.bias, self.negative_slope, self.scale) | |
| def fused_leaky_relu(input, bias, negative_slope=0.2, scale=2 ** 0.5): | |
| rest_dim = [1] * (input.ndim - bias.ndim - 1) | |
| input = input.cuda() | |
| return ( | |
| F.leaky_relu( | |
| input + bias.view(1, bias.shape[0], *rest_dim), negative_slope=negative_slope | |
| ) | |
| * scale | |
| ) | |