import torch import torchvision from torch import nn def create_effnetb2_model(num_classes:int=3,seed:int=42): weights=torchvision.models.EfficientNet_B2_Weights.DEFAULT eff_transforms=weights.transforms() model=torchvision.models.efficientnet_b2(weights=weights) #freeze all layers in the base model for param in model.parameters(): param.requires_grad=False #change classifier head with random seed for reproducibility torch.manual_seed(seed) model.classifier=nn.Sequential(nn.Dropout(p=0.3,inplace=True), nn.Linear(in_features=1408,out_features=num_classes)) return model,eff_transforms