Spaces:
Runtime error
Runtime error
Update app.py
Browse files
app.py
CHANGED
@@ -4,6 +4,7 @@ import pytesseract
|
|
4 |
import requests
|
5 |
import pandas as pd
|
6 |
import gradio as gr
|
|
|
7 |
from io import BytesIO
|
8 |
|
9 |
# ββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββ
|
@@ -54,10 +55,12 @@ def ocr_on_region(image: np.ndarray, box: tuple):
|
|
54 |
Return the raw OCR text.
|
55 |
"""
|
56 |
x, y, w, h = box
|
57 |
-
cropped = image[y:y + h, x:x + w]
|
58 |
gray_crop = cv2.cvtColor(cropped, cv2.COLOR_BGR2GRAY)
|
59 |
-
_, thresh_crop = cv2.threshold(
|
60 |
-
|
|
|
|
|
61 |
text = pytesseract.image_to_string(thresh_crop, config=custom_config)
|
62 |
return text.strip()
|
63 |
|
@@ -84,7 +87,7 @@ def query_openlibrary(title_text: str, author_text: str = None):
|
|
84 |
"title": doc.get("title", ""),
|
85 |
"author_name": ", ".join(doc.get("author_name", [])),
|
86 |
"publisher": ", ".join(doc.get("publisher", [])),
|
87 |
-
"first_publish_year": doc.get("first_publish_year", "")
|
88 |
}
|
89 |
except Exception as e:
|
90 |
print(f"OpenLibrary query failed: {e}")
|
@@ -97,7 +100,7 @@ def query_openlibrary(title_text: str, author_text: str = None):
|
|
97 |
def process_image(image_file):
|
98 |
"""
|
99 |
Gradio passes a PIL image or numpy array. Convert to OpenCV BGR, detect covers β OCR β OpenLibrary.
|
100 |
-
Return a DataFrame and CSV
|
101 |
"""
|
102 |
img = np.array(image_file)[:, :, ::-1].copy() # PIL to OpenCV BGR
|
103 |
boxes = detect_book_regions(img)
|
@@ -116,20 +119,28 @@ def process_image(image_file):
|
|
116 |
if meta:
|
117 |
records.append(meta)
|
118 |
else:
|
119 |
-
records.append(
|
120 |
-
|
121 |
-
|
122 |
-
|
123 |
-
|
124 |
-
|
|
|
|
|
125 |
|
126 |
if not records:
|
127 |
df_empty = pd.DataFrame(columns=["title", "author_name", "publisher", "first_publish_year"])
|
128 |
-
|
|
|
|
|
|
|
|
|
129 |
|
130 |
df = pd.DataFrame(records)
|
131 |
csv_bytes = df.to_csv(index=False).encode()
|
132 |
-
|
|
|
|
|
133 |
|
134 |
# ββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββ
|
135 |
# 5. Build the Gradio Interface
|
@@ -151,15 +162,20 @@ def build_interface():
|
|
151 |
|
152 |
output_table = gr.Dataframe(
|
153 |
headers=["title", "author_name", "publisher", "first_publish_year"],
|
154 |
-
label="Detected Books with Metadata"
|
|
|
155 |
)
|
156 |
-
|
157 |
|
158 |
def on_run(image):
|
159 |
-
df,
|
160 |
-
return df,
|
161 |
|
162 |
-
run_button.click(
|
|
|
|
|
|
|
|
|
163 |
|
164 |
return demo
|
165 |
|
|
|
4 |
import requests
|
5 |
import pandas as pd
|
6 |
import gradio as gr
|
7 |
+
import io
|
8 |
from io import BytesIO
|
9 |
|
10 |
# ββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββ
|
|
|
55 |
Return the raw OCR text.
|
56 |
"""
|
57 |
x, y, w, h = box
|
58 |
+
cropped = image[y : y + h, x : x + w]
|
59 |
gray_crop = cv2.cvtColor(cropped, cv2.COLOR_BGR2GRAY)
|
60 |
+
_, thresh_crop = cv2.threshold(
|
61 |
+
gray_crop, 0, 255, cv2.THRESH_BINARY + cv2.THRESH_OTSU
|
62 |
+
)
|
63 |
+
custom_config = r"--oem 3 --psm 6"
|
64 |
text = pytesseract.image_to_string(thresh_crop, config=custom_config)
|
65 |
return text.strip()
|
66 |
|
|
|
87 |
"title": doc.get("title", ""),
|
88 |
"author_name": ", ".join(doc.get("author_name", [])),
|
89 |
"publisher": ", ".join(doc.get("publisher", [])),
|
90 |
+
"first_publish_year": doc.get("first_publish_year", ""),
|
91 |
}
|
92 |
except Exception as e:
|
93 |
print(f"OpenLibrary query failed: {e}")
|
|
|
100 |
def process_image(image_file):
|
101 |
"""
|
102 |
Gradio passes a PIL image or numpy array. Convert to OpenCV BGR, detect covers β OCR β OpenLibrary.
|
103 |
+
Return a DataFrame and a (filename, BytesIO) tuple for CSV.
|
104 |
"""
|
105 |
img = np.array(image_file)[:, :, ::-1].copy() # PIL to OpenCV BGR
|
106 |
boxes = detect_book_regions(img)
|
|
|
119 |
if meta:
|
120 |
records.append(meta)
|
121 |
else:
|
122 |
+
records.append(
|
123 |
+
{
|
124 |
+
"title": title_guess,
|
125 |
+
"author_name": author_guess or "",
|
126 |
+
"publisher": "",
|
127 |
+
"first_publish_year": "",
|
128 |
+
}
|
129 |
+
)
|
130 |
|
131 |
if not records:
|
132 |
df_empty = pd.DataFrame(columns=["title", "author_name", "publisher", "first_publish_year"])
|
133 |
+
# Build an empty CSV bytes buffer
|
134 |
+
empty_csv = df_empty.to_csv(index=False).encode()
|
135 |
+
buffer = io.BytesIO(empty_csv)
|
136 |
+
buffer.name = "books.csv"
|
137 |
+
return df_empty, buffer
|
138 |
|
139 |
df = pd.DataFrame(records)
|
140 |
csv_bytes = df.to_csv(index=False).encode()
|
141 |
+
buffer = io.BytesIO(csv_bytes)
|
142 |
+
buffer.name = "books.csv"
|
143 |
+
return df, buffer
|
144 |
|
145 |
# ββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββ
|
146 |
# 5. Build the Gradio Interface
|
|
|
162 |
|
163 |
output_table = gr.Dataframe(
|
164 |
headers=["title", "author_name", "publisher", "first_publish_year"],
|
165 |
+
label="Detected Books with Metadata",
|
166 |
+
datatype="pandas",
|
167 |
)
|
168 |
+
download_file = gr.File(label="Download CSV")
|
169 |
|
170 |
def on_run(image):
|
171 |
+
df, file_buffer = process_image(image)
|
172 |
+
return df, file_buffer
|
173 |
|
174 |
+
run_button.click(
|
175 |
+
fn=on_run,
|
176 |
+
inputs=[img_in],
|
177 |
+
outputs=[output_table, download_file],
|
178 |
+
)
|
179 |
|
180 |
return demo
|
181 |
|