import cv2 import numpy as np import pytesseract import requests import pandas as pd import gradio as gr # ────────────────────────────────────────────────────────────── # 1. Utility: Detect rectangular contours (approximate book covers) # ────────────────────────────────────────────────────────────── def detect_book_regions(image: np.ndarray, min_area=10000, eps_coef=0.02): """ Detect rectangular regions in an image that likely correspond to book covers. Returns a list of bounding boxes: (x, y, w, h). """ gray = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY) blurred = cv2.GaussianBlur(gray, (5, 5), 0) edges = cv2.Canny(blurred, 50, 150) # Dilate + erode to close gaps kernel = cv2.getStructuringElement(cv2.MORPH_RECT, (5, 5)) closed = cv2.morphologyEx(edges, cv2.MORPH_CLOSE, kernel) contours, _ = cv2.findContours(closed.copy(), cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE) boxes = [] for cnt in contours: area = cv2.contourArea(cnt) if area < min_area: continue peri = cv2.arcLength(cnt, True) approx = cv2.approxPolyDP(cnt, eps_coef * peri, True) # Keep only quadrilaterals if len(approx) == 4: x, y, w, h = cv2.boundingRect(approx) ar = w / float(h) # Filter by typical book-cover aspect ratios if 0.4 < ar < 0.9 or 1.0 < ar < 1.6: boxes.append((x, y, w, h)) # Sort left→right, top→bottom boxes = sorted(boxes, key=lambda b: (b[1], b[0])) return boxes # ────────────────────────────────────────────────────────────── # 2. OCR on a cropped region # ────────────────────────────────────────────────────────────── def ocr_on_region(image: np.ndarray, box: tuple): """ Crop the image to the given box and run Tesseract OCR. Return the raw OCR text. """ x, y, w, h = box cropped = image[y : y + h, x : x + w] gray_crop = cv2.cvtColor(cropped, cv2.COLOR_BGR2GRAY) _, thresh_crop = cv2.threshold( gray_crop, 0, 255, cv2.THRESH_BINARY + cv2.THRESH_OTSU ) custom_config = r"--oem 3 --psm 6" text = pytesseract.image_to_string(thresh_crop, config=custom_config) return text.strip() # ────────────────────────────────────────────────────────────── # 3. Query OpenLibrary API # ────────────────────────────────────────────────────────────── def query_openlibrary(title_text: str, author_text: str = None): """ Search OpenLibrary by title (and optional author). Return a dict with title, author_name, publisher, first_publish_year, or None. """ base_url = "https://openlibrary.org/search.json" params = {"title": title_text} if author_text: params["author"] = author_text try: resp = requests.get(base_url, params=params, timeout=5) resp.raise_for_status() data = resp.json() if data.get("docs"): doc = data["docs"][0] return { "title": doc.get("title", ""), "author_name": ", ".join(doc.get("author_name", [])), "publisher": ", ".join(doc.get("publisher", [])), "first_publish_year": doc.get("first_publish_year", ""), } except Exception as e: print(f"OpenLibrary query failed: {e}") return None # ────────────────────────────────────────────────────────────── # 4. Process one uploaded image # ────────────────────────────────────────────────────────────── def process_image(image_file): """ Gradio passes a PIL image or numpy array. Convert to OpenCV BGR, detect covers → OCR → OpenLibrary. Return a DataFrame and CSV bytes (as raw bytes). """ img = np.array(image_file)[:, :, ::-1].copy() # PIL to OpenCV BGR boxes = detect_book_regions(img) records = [] for box in boxes: ocr_text = ocr_on_region(img, box) lines = [l.strip() for l in ocr_text.splitlines() if l.strip()] if not lines: continue title_guess = lines[0] author_guess = lines[1] if len(lines) > 1 else None meta = query_openlibrary(title_guess, author_guess) if meta: records.append(meta) else: records.append( { "title": title_guess, "author_name": author_guess or "", "publisher": "", "first_publish_year": "", } ) # Build DataFrame if not records: df_empty = pd.DataFrame(columns=["title", "author_name", "publisher", "first_publish_year"]) csv_bytes = df_empty.to_csv(index=False).encode() return df_empty, csv_bytes df = pd.DataFrame(records) csv_bytes = df.to_csv(index=False).encode() return df, csv_bytes # ────────────────────────────────────────────────────────────── # 5. Build the Gradio Interface # ────────────────────────────────────────────────────────────── def build_interface(): with gr.Blocks(title="Book Cover Scanner") as demo: gr.Markdown( """ ## Book Cover Scanner + Metadata Lookup 1. Upload a photo containing one or multiple book covers 2. The app will detect each cover, run OCR, then query OpenLibrary for metadata 3. Results appear in a table below, and you can download a CSV """ ) with gr.Row(): img_in = gr.Image(type="pil", label="Upload Image of Book Covers") run_button = gr.Button("Scan & Lookup") output_table = gr.Dataframe( headers=["title", "author_name", "publisher", "first_publish_year"], label="Detected Books with Metadata", datatype="pandas", ) download_file = gr.File(label="Download CSV") def on_run(image): df, csv_bytes = process_image(image) # Return DataFrame plus a dict that gr.File understands: return df, {"name": "books.csv", "data": csv_bytes} run_button.click( fn=on_run, inputs=[img_in], outputs=[output_table, download_file], ) return demo if __name__ == "__main__": demo_app = build_interface() # You can add share=True if you want a public link; otherwise this is fine: demo_app.launch()