import gradio as gr import torch import numpy as np import matplotlib.pyplot as plt from enformer_pytorch import Enformer from einops import rearrange # Initialize Enformer with correct architecture (based on EleutherAI/enformer-191k) model = Enformer( num_channels=1536, num_classes=5313, target_length=896, depth=11, heads=8 ) model.eval() # Optionally load pretrained weights if available locally or upload to HF Spaces manually # model.load_state_dict(torch.load("enformer-191k.pth")) # optional for offline Spaces # Helper function to one-hot encode DNA def one_hot_encode(sequence, length=196608): mapping = {'A': 0, 'C': 1, 'G': 2, 'T': 3} one_hot = np.zeros((length, 4), dtype=np.float32) sequence = sequence.upper().replace("N", "A") for i, base in enumerate(sequence[:length]): if base in mapping: one_hot[i, mapping[base]] = 1.0 return one_hot # Prediction function def predict_expression(dna_sequence): encoded = one_hot_encode(dna_sequence) input_tensor = torch.tensor(encoded).unsqueeze(0) # shape: (1, length, 4) input_tensor = rearrange(input_tensor, 'b l c -> b c l') # shape: (1, 4, length) with torch.no_grad(): output = model(input_tensor) avg_expression = output[0].mean(dim=0).numpy() # (5313,) # Plot first 10 expression predictions plt.figure(figsize=(10, 4)) plt.bar(range(10), avg_expression[:10]) plt.xticks(range(10), [f"Tissue {i}" for i in range(10)]) plt.title("Predicted Gene Expression") plt.ylabel("Signal") plt.tight_layout() return plt.gcf() # Gradio app demo = gr.Interface( fn=predict_expression, inputs=gr.Textbox(lines=6, label="Paste DNA Sequence (200k bp)"), outputs=gr.Plot(label="Predicted Expression Tracks (first 10 tissues)"), title="Gene Expression Prediction with Enformer", description="Paste a 200kb DNA sequence and see predicted expression levels using Enformer." ) demo.launch()