File size: 10,768 Bytes
ceb70c7
 
 
 
 
 
 
 
 
 
 
 
2a85ae5
ceb70c7
 
ec837b4
b3cf31b
 
ceb70c7
 
b3cf31b
 
 
 
 
 
 
 
 
cbb5ba6
 
 
 
 
 
b3cf31b
cbb5ba6
b3cf31b
ceb70c7
b3cf31b
 
 
 
ceb70c7
b3cf31b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ceb70c7
b3cf31b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
cbb5ba6
b3cf31b
 
 
 
 
 
 
 
cbb5ba6
b3cf31b
 
 
 
 
cbb5ba6
b3cf31b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
cbb5ba6
b3cf31b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
cbb5ba6
b3cf31b
 
 
 
 
 
ceb70c7
b3cf31b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ceb70c7
b3cf31b
 
ceb70c7
b3cf31b
 
 
 
 
 
ceb70c7
b3cf31b
 
 
 
cbb5ba6
b3cf31b
ceb70c7
 
b3cf31b
 
 
 
 
 
 
 
ceb70c7
 
 
 
b3cf31b
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
#
# SPDX-FileCopyrightText: Hadad <hadad@linuxmail.org>
# SPDX-License-Identifier: Apache-2.0
#

import time
from assets.css.reasoning import styles
from ..response.formatter import assistant_response
from ..reasoning.interface import reasoning_interfaces
from ..reasoning.tool_reasoning import tool_reasoning
from .parser import extract_tool_parameters
from .executor import invoke_tool_function
from config import MAX_TOKENS, REASONING_DELAY

def process_tool_interactions(server, model_name, conversation_messages, tool_definitions, search_engine):
    maximum_iterations = 1
    max_retry_limit = 10
    retry_count = 0
    logs_generator = ""
    tool_results = []
    execution_success = False
    last_error = None
    error_history = []
    iteration_metrics = {
        "attempts": 0,
        "failures": 0,
        "success_rate": 0,
        "error_patterns": {},
        "retry_delays": [
            0.02,
            0.03,
            0.04,
            0.05,
            0.06,
            0.07
        ],
        "backoff_multiplier": 1.0
    }
    
    while maximum_iterations <= max_retry_limit and not execution_success:
        iteration_metrics["attempts"] += 1
        current_iteration_successful = False
        iteration_errors = []
        
        for iteration_index in range(maximum_iterations):
            try:
                retry_delay = iteration_metrics["retry_delays"][min(retry_count, len(iteration_metrics["retry_delays"]) - 1)]
                if retry_count > 0:
                    time.sleep(retry_delay * iteration_metrics["backoff_multiplier"])
                
                model_response = server.chat.completions.create(
                    model=model_name,
                    messages=conversation_messages,
                    tools=tool_definitions,
                    tool_choice="auto",
                    max_tokens=MAX_TOKENS,
                    temperature=0.6
                )
                
                response_choice = model_response.choices[0]
                assistant_message = response_choice.message
                formatted_assistant_message = assistant_response(assistant_message)
                
                conversation_messages.append(
                    {
                        "role": formatted_assistant_message["role"],
                        "content": formatted_assistant_message["content"],
                        "tool_calls": formatted_assistant_message["tool_calls"]
                    }
                )

                pending_tool_calls = assistant_message.tool_calls or []
                if not pending_tool_calls:
                    if logs_generator:
                        logs_generator = styles(logs_generator.replace('<br>', '\n').strip(), expanded=False)
                    execution_success = True
                    current_iteration_successful = True
                    break

                tool_execution_errors = []
                for tool_invocation in pending_tool_calls:
                    tool_name = tool_invocation.function.name
                    tool_arguments_raw = tool_invocation.function.arguments
                    
                    extracted_arguments, extraction_error = extract_tool_parameters(tool_arguments_raw)
                    
                    if extraction_error:
                        error_key = f"{tool_name}_extraction"
                        iteration_metrics["error_patterns"][error_key] = iteration_metrics["error_patterns"].get(error_key, 0) + 1
                        tool_execution_errors.append({
                            "tool": tool_name,
                            "error": extraction_error,
                            "type": "extraction"
                        })
                        
                        reasoning_error = tool_reasoning(tool_name, None, "error", error=extraction_error)
                        for i in range(0, len(reasoning_error), 10):
                            logs_generator = styles(reasoning_interfaces(reasoning_error, i), expanded=True)
                            yield logs_generator
                            time.sleep(REASONING_DELAY)
                        logs_generator = styles(reasoning_error, expanded=True)
                        yield logs_generator
                        tool_execution_result = extraction_error
                    else:
                        reasoning_status = tool_reasoning(tool_name, extracted_arguments, "parsing")
                        for i in range(0, len(reasoning_status), 10):
                            logs_generator = styles(reasoning_interfaces(reasoning_status, i), expanded=True)
                            yield logs_generator
                            time.sleep(REASONING_DELAY)
                        
                        reasoning_start = tool_reasoning(tool_name, extracted_arguments, "executing")
                        for i in range(0, len(reasoning_start), 10):
                            logs_generator = styles(reasoning_interfaces(reasoning_start, i), expanded=True)
                            yield logs_generator
                            time.sleep(REASONING_DELAY)
                        
                        try:
                            tool_execution_result = invoke_tool_function(
                                search_engine, 
                                tool_name, 
                                extracted_arguments
                            )
                            tool_results.append({
                                "tool": tool_name,
                                "arguments": extracted_arguments,
                                "result": tool_execution_result,
                                "iteration": maximum_iterations,
                                "retry_count": retry_count
                            })
                            
                            reasoning_done = tool_reasoning(tool_name, extracted_arguments, "completed", result=tool_execution_result)
                            for i in range(0, len(reasoning_done), 10):
                                logs_generator = styles(reasoning_interfaces(reasoning_done, i), expanded=True)
                                yield logs_generator
                                time.sleep(REASONING_DELAY)
                            logs_generator = styles(reasoning_done, expanded=False)
                            yield logs_generator
                            
                        except Exception as tool_error:
                            error_key = f"{tool_name}_execution"
                            iteration_metrics["error_patterns"][error_key] = iteration_metrics["error_patterns"].get(error_key, 0) + 1
                            tool_execution_errors.append({
                                "tool": tool_name,
                                "error": str(tool_error),
                                "type": "execution",
                                "arguments": extracted_arguments
                            })
                            
                            reasoning_error = tool_reasoning(tool_name, extracted_arguments, "error", error=str(tool_error))
                            for i in range(0, len(reasoning_error), 10):
                                logs_generator = styles(reasoning_interfaces(reasoning_error, i), expanded=True)
                                yield logs_generator
                                time.sleep(REASONING_DELAY)
                            logs_generator = styles(reasoning_error, expanded=True)
                            yield logs_generator
                            tool_execution_result = str(tool_error)

                    conversation_messages.append(
                        {
                            "role": "tool",
                            "tool_call_id": tool_invocation.id,
                            "name": tool_name,
                            "content": tool_execution_result
                        }
                    )
                
                if not tool_execution_errors:
                    execution_success = True
                    current_iteration_successful = True
                    break
                else:
                    iteration_errors.extend(tool_execution_errors)
                    
            except Exception as model_error:
                last_error = str(model_error)
                error_history.append({
                    "iteration": maximum_iterations,
                    "error": last_error,
                    "timestamp": time.time()
                })
                iteration_metrics["failures"] += 1
                iteration_errors.append({
                    "error": last_error,
                    "type": "model"
                })
        
        if current_iteration_successful:
            execution_success = True
            break
        else:
            if iteration_errors:
                error_history.extend(iteration_errors)
            
            retry_count += 1
            previous_iterations = maximum_iterations
            
            if iteration_metrics["error_patterns"]:
                frequent_errors = max(iteration_metrics["error_patterns"].values())
                if frequent_errors > 3:
                    maximum_iterations = min(maximum_iterations + 2, max_retry_limit)
                else:
                    maximum_iterations = min(maximum_iterations + 1, max_retry_limit)
            else:
                maximum_iterations = min(maximum_iterations + 1, max_retry_limit)
            
            if maximum_iterations > previous_iterations:
                retry_reasoning = f"Retrying with increased iterations: {maximum_iterations} (attempt {retry_count + 1})"
                for i in range(0, len(retry_reasoning), 10):
                    logs_generator = styles(reasoning_interfaces(retry_reasoning, i), expanded=True)
                    yield logs_generator
                    time.sleep(REASONING_DELAY)
            
            if maximum_iterations >= max_retry_limit:
                final_error = f"Maximum retry limit reached after {iteration_metrics['attempts']} attempts with {iteration_metrics['failures']} failures"
                logs_generator = styles(final_error, expanded=True)
                yield logs_generator
                break
    
    iteration_metrics["success_rate"] = (len(tool_results) / max(iteration_metrics["attempts"], 1)) * 100
    
    if logs_generator:
        logs_generator = styles(logs_generator.replace('<br>', '\n').strip(), expanded=False)
    
    generator_results = len(tool_results) > 0
    return conversation_messages, logs_generator, generator_results