import os import gradio as gr from openai import OpenAI # Initialize OpenAI client using Hugging Face router hf_token = os.getenv("apikey") # ensure your HF_TOKEN env var is set client = OpenAI( base_url="https://router.huggingface.co/v1", api_key=hf_token, ) # Function to handle chat responses def respond( message: str, history: list[tuple[str, str]], system_message: str, max_tokens: int, temperature: float, top_p: float, ): # Build messages list with system prompt messages = [{"role": "system", "content": system_message}] # Append past conversation for user_msg, bot_msg in history: if user_msg: messages.append({"role": "user", "content": user_msg}) if bot_msg: messages.append({"role": "assistant", "content": bot_msg}) # Add current user message messages.append({"role": "user", "content": message}) response_text = "" # Stream completion completion = client.chat.completions.create( model="openai/gpt-oss-120b", messages=messages, max_tokens=max_tokens, temperature=temperature, top_p=top_p, stream=True, ) for chunk in completion: # chunk.choices[0].delta is a ChoiceDelta object with .content attribute delta = chunk.choices[0].delta.content or "" response_text += delta yield response_text # Setup Gradio ChatInterface demo = gr.ChatInterface( fn=respond, additional_inputs=[ gr.Textbox(value="You are a friendly Chatbot.", label="System message"), gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"), gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"), gr.Slider( minimum=0.1, maximum=1.0, value=0.95, step=0.05, label="Top-p (nucleus sampling)", ), ], ) if __name__ == "__main__": demo.launch(share=True)