Spaces:
Running
Running
File size: 57,349 Bytes
fe0ef09 98a0731 fe0ef09 d2136dc fe0ef09 a43dc1c 79859a0 c58c8df 79859a0 c58c8df a43dc1c fe0ef09 a43dc1c fe0ef09 a43dc1c fe0ef09 a43dc1c fe0ef09 f310d7e fe0ef09 98a0731 fe0ef09 a43dc1c fe0ef09 98a0731 fe0ef09 622f9de 98a0731 622f9de fe0ef09 622f9de fe0ef09 622f9de fe0ef09 622f9de fe0ef09 622f9de fe0ef09 3d66778 622f9de 3d66778 622f9de 3d66778 fe0ef09 91099df fe0ef09 91099df fe0ef09 91099df aaeb58e 622f9de 91099df 622f9de 91099df 622f9de 25a8945 622f9de 71b0c15 622f9de 1e5d194 622f9de 91099df 622f9de 1e5d194 622f9de fe0ef09 5d456ad fe0ef09 91099df fe0ef09 91099df fe0ef09 aaeb58e 5d456ad f127ccc 91099df fe0ef09 91099df fe0ef09 91099df 622f9de 5d456ad 622f9de 5d456ad 91099df 622f9de 25a8945 622f9de ffea308 5d456ad 91099df 5d456ad f127ccc 5d456ad 91099df 5d456ad ffea308 fe0ef09 e351eb9 a43dc1c e351eb9 fe0ef09 e351eb9 a43dc1c e351eb9 66cc7dd e351eb9 fe0ef09 e351eb9 79859a0 e351eb9 79859a0 e351eb9 fe0ef09 e351eb9 fe0ef09 e351eb9 fe0ef09 e351eb9 6697b32 e351eb9 fe0ef09 e351eb9 fe0ef09 e351eb9 fe0ef09 e351eb9 79859a0 6697b32 79859a0 e351eb9 6697b32 e351eb9 a43dc1c 614acaa |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 |
import streamlit as st
import requests
import os
import json
import uuid
from datetime import datetime, timedelta
from sentence_transformers import SentenceTransformer
import chromadb
from langchain_text_splitters import RecursiveCharacterTextSplitter
import re
import shutil
from git import Repo
# Page configuration
st.set_page_config(
page_title="RAG Chat Flow β",
page_icon="β",
initial_sidebar_state="expanded"
)
# Initialize dark mode state
if 'dark_mode' not in st.session_state:
st.session_state.dark_mode = False
# Define personality questions - reduced to general ones
PERSONALITY_QUESTIONS = [
"What is [name]'s personality like?",
"What does [name] do for work?",
"What are [name]'s hobbies?",
"What makes [name] special?",
"Tell me about [name]"
]
# Enhanced CSS styling with dark mode support
def get_css_styles():
if st.session_state.dark_mode:
return """
<style>
/* Dark Mode Styles */
.stApp {
background: #0e1117;
color: #fafafa;
}
.main .block-container {
max-width: 900px;
}
#MainMenu {visibility: hidden;}
footer {visibility: hidden;}
header {visibility: hidden;}
.stDeployButton {display: none;}
/* Sidebar dark mode */
.css-1d391kg {
background-color: #1e1e1e !important;
}
.css-1cypcdb {
background-color: #1e1e1e !important;
}
/* Chat messages dark mode */
.stChatMessage {
background-color: #262730 !important;
border: 1px solid #404040 !important;
}
/* Input fields dark mode */
.stTextInput > div > div > input {
background-color: #262730 !important;
color: #fafafa !important;
border-color: #404040 !important;
}
.stTextArea > div > div > textarea {
background-color: #262730 !important;
color: #fafafa !important;
border-color: #404040 !important;
}
.model-id {
color: #4ade80;
font-family: monospace;
}
.model-attribution {
color: #4ade80;
font-size: 0.8em;
font-style: italic;
}
.rag-attribution {
color: #a78bfa;
font-size: 0.8em;
font-style: italic;
background: #1f2937;
padding: 8px;
border-radius: 4px;
border-left: 3px solid #a78bfa;
margin-top: 8px;
}
/* Dark mode toggle button */
.dark-mode-toggle {
background: linear-gradient(135deg, #667eea 0%, #764ba2 100%);
color: white;
padding: 8px 16px;
margin: 4px 0;
border-radius: 8px;
border: none;
cursor: pointer;
transition: all 0.3s ease;
font-size: 0.9em;
width: 100%;
text-align: center;
}
.dark-mode-toggle:hover {
transform: translateY(-1px);
box-shadow: 0 4px 12px rgba(102, 126, 234, 0.4);
}
/* NEW CHAT BUTTON - Black background for dark mode */
.stButton > button[kind="primary"] {
background-color: #1f2937 !important;
border-color: #374151 !important;
color: #fafafa !important;
}
.stButton > button[kind="primary"]:hover {
background-color: #374151 !important;
border-color: #4b5563 !important;
color: #fafafa !important;
}
/* Regular buttons dark mode */
.stButton > button {
background-color: #374151 !important;
border-color: #4b5563 !important;
color: #fafafa !important;
}
.stButton > button:hover {
background-color: #4b5563 !important;
border-color: #6b7280 !important;
color: #fafafa !important;
}
/* Personality Questions Styling Dark Mode */
.personality-question {
background: linear-gradient(135deg, #4f46e5 0%, #7c3aed 100%);
color: white;
padding: 8px 12px;
margin: 4px 0;
border-radius: 8px;
border: none;
cursor: pointer;
transition: all 0.3s ease;
font-size: 0.85em;
width: 100%;
text-align: left;
}
.personality-question:hover {
transform: translateY(-2px);
box-shadow: 0 4px 12px rgba(79, 70, 229, 0.4);
}
.personality-section {
background: #1f2937;
color: #e5e7eb;
padding: 12px;
border-radius: 8px;
border-left: 4px solid #4f46e5;
margin: 10px 0;
}
/* Chat history styling dark mode */
.chat-history-item {
padding: 8px 12px;
margin: 4px 0;
border-radius: 8px;
border: 1px solid #374151;
background: #1f2937;
color: #e5e7eb;
cursor: pointer;
transition: all 0.2s;
}
.chat-history-item:hover {
background: #374151;
border-color: #4ade80;
}
.document-status {
background: #1e3a8a;
color: #bfdbfe;
padding: 10px;
border-radius: 8px;
border-left: 4px solid #3b82f6;
margin: 10px 0;
}
.github-status {
background: #581c87;
color: #e9d5ff;
padding: 10px;
border-radius: 8px;
border-left: 4px solid #a78bfa;
margin: 10px 0;
}
.rag-stats {
background: #581c87;
color: #e9d5ff;
padding: 8px;
border-radius: 6px;
font-size: 0.85em;
}
/* Expander dark mode */
.streamlit-expanderHeader {
background-color: #1f2937 !important;
color: #fafafa !important;
}
.streamlit-expanderContent {
background-color: #111827 !important;
color: #fafafa !important;
}
/* Checkbox dark mode */
.stCheckbox {
color: #fafafa !important;
}
/* Select box dark mode */
.stSelectbox > div > div {
background-color: #262730 !important;
color: #fafafa !important;
}
/* File uploader dark mode */
.stFileUploader {
background-color: #1f2937 !important;
border-color: #374151 !important;
}
/* Progress bar dark mode */
.stProgress .st-bo {
background-color: #374151 !important;
}
/* Success/Error/Warning messages dark mode */
.stSuccess {
background-color: #064e3b !important;
color: #6ee7b7 !important;
}
.stError {
background-color: #7f1d1d !important;
color: #fca5a5 !important;
}
.stWarning {
background-color: #78350f !important;
color: #fcd34d !important;
}
.stInfo {
background-color: #1e3a8a !important;
color: #93c5fd !important;
}
/* Caption text dark mode */
.caption {
color: #9ca3af !important;
}
/* Divider dark mode */
hr {
border-color: #374151 !important;
}
</style>
"""
else:
return """
<style>
/* Light Mode Styles */
.stApp {
background: white;
color: #000000;
}
.main .block-container {
max-width: 900px;
}
#MainMenu {visibility: hidden;}
footer {visibility: hidden;}
header {visibility: hidden;}
.stDeployButton {display: none;}
.model-id {
color: #28a745;
font-family: monospace;
}
.model-attribution {
color: #28a745;
font-size: 0.8em;
font-style: italic;
}
.rag-attribution {
color: #6f42c1;
font-size: 0.8em;
font-style: italic;
background: #f8f9fa;
padding: 8px;
border-radius: 4px;
border-left: 3px solid #6f42c1;
margin-top: 8px;
}
/* Light mode toggle button */
.dark-mode-toggle {
background: linear-gradient(135deg, #667eea 0%, #764ba2 100%);
color: white;
padding: 8px 16px;
margin: 4px 0;
border-radius: 8px;
border: none;
cursor: pointer;
transition: all 0.3s ease;
font-size: 0.9em;
width: 100%;
text-align: center;
}
.dark-mode-toggle:hover {
transform: translateY(-1px);
box-shadow: 0 4px 12px rgba(102, 126, 234, 0.3);
}
/* NEW CHAT BUTTON - Black background */
.stButton > button[kind="primary"] {
background-color: #000000 !important;
border-color: #000000 !important;
color: #ffffff !important;
}
.stButton > button[kind="primary"]:hover {
background-color: #333333 !important;
border-color: #333333 !important;
color: #ffffff !important;
}
/* Personality Questions Styling */
.personality-question {
background: linear-gradient(135deg, #667eea 0%, #764ba2 100%);
color: white;
padding: 8px 12px;
margin: 4px 0;
border-radius: 8px;
border: none;
cursor: pointer;
transition: all 0.3s ease;
font-size: 0.85em;
width: 100%;
text-align: left;
}
.personality-question:hover {
transform: translateY(-2px);
box-shadow: 0 4px 12px rgba(102, 126, 234, 0.3);
}
.personality-section {
background: #f8f9ff;
padding: 12px;
border-radius: 8px;
border-left: 4px solid #667eea;
margin: 10px 0;
}
/* Chat history styling */
.chat-history-item {
padding: 8px 12px;
margin: 4px 0;
border-radius: 8px;
border: 1px solid #e0e0e0;
background: #f8f9fa;
cursor: pointer;
transition: all 0.2s;
}
.chat-history-item:hover {
background: #e9ecef;
border-color: #28a745;
}
.document-status {
background: #e3f2fd;
padding: 10px;
border-radius: 8px;
border-left: 4px solid #2196f3;
margin: 10px 0;
}
.github-status {
background: #f3e5f5;
padding: 10px;
border-radius: 8px;
border-left: 4px solid #6f42c1;
margin: 10px 0;
}
.rag-stats {
background: #f3e5f5;
padding: 8px;
border-radius: 6px;
font-size: 0.85em;
color: #4a148c;
}
</style>
"""
# Apply CSS styles
st.markdown(get_css_styles(), unsafe_allow_html=True)
# File paths
HISTORY_FILE = "rag_chat_history.json"
SESSIONS_FILE = "rag_chat_sessions.json"
USERS_FILE = "online_users.json"
# ================= GITHUB INTEGRATION =================
def clone_github_repo():
"""Clone or update GitHub repository with documents"""
github_token = os.getenv("GITHUB_TOKEN")
if not github_token:
st.error("π GITHUB_TOKEN not found in environment variables")
return False
try:
repo_url = f"https://{github_token}@github.com/Umer-K/family-profiles.git"
repo_dir = "family_profiles"
# Clean up existing directory if it exists
if os.path.exists(repo_dir):
shutil.rmtree(repo_dir)
# Clone the repository
with st.spinner("π Cloning private repository..."):
Repo.clone_from(repo_url, repo_dir)
# Copy txt files to documents folder
documents_dir = "documents"
os.makedirs(documents_dir, exist_ok=True)
# Clear existing documents
for file in os.listdir(documents_dir):
if file.endswith('.txt'):
os.remove(os.path.join(documents_dir, file))
# Copy new txt files from repo
txt_files_found = 0
for root, dirs, files in os.walk(repo_dir):
for file in files:
if file.endswith('.txt'):
src_path = os.path.join(root, file)
dst_path = os.path.join(documents_dir, file)
shutil.copy2(src_path, dst_path)
txt_files_found += 1
# Clean up repo directory
shutil.rmtree(repo_dir)
st.success(f"β
Successfully synced {txt_files_found} documents from GitHub!")
return True
except Exception as e:
st.error(f"β GitHub sync failed: {str(e)}")
return False
def check_github_status():
"""Check GitHub token availability and repo access"""
github_token = os.getenv("GITHUB_TOKEN")
if not github_token:
return {
"status": "missing",
"message": "No GitHub token found",
"color": "red"
}
try:
# Test token by making a simple API call
headers = {
"Authorization": f"token {github_token}",
"Accept": "application/vnd.github.v3+json"
}
response = requests.get(
"https://api.github.com/repos/Umer-K/family-profiles",
headers=headers,
timeout=10
)
if response.status_code == 200:
return {
"status": "connected",
"message": "GitHub access verified",
"color": "green"
}
elif response.status_code == 404:
return {
"status": "not_found",
"message": "Repository not found or no access",
"color": "orange"
}
elif response.status_code == 401:
return {
"status": "unauthorized",
"message": "Invalid GitHub token",
"color": "red"
}
else:
return {
"status": "error",
"message": f"GitHub API error: {response.status_code}",
"color": "orange"
}
except Exception as e:
return {
"status": "error",
"message": f"Connection error: {str(e)}",
"color": "orange"
}
# ================= RAG SYSTEM CLASS =================
@st.cache_resource
def initialize_rag_system():
"""Initialize RAG system with caching"""
return ProductionRAGSystem()
class ProductionRAGSystem:
def __init__(self, collection_name="streamlit_rag_docs"):
self.collection_name = collection_name
# Initialize embedding model
try:
self.model = SentenceTransformer('all-mpnet-base-v2')
except Exception as e:
st.error(f"Error loading embedding model: {e}")
self.model = None
return
# Initialize ChromaDB
try:
self.client = chromadb.PersistentClient(path="./chroma_db")
try:
self.collection = self.client.get_collection(collection_name)
except:
self.collection = self.client.create_collection(collection_name)
except Exception as e:
st.error(f"Error initializing ChromaDB: {e}")
self.client = None
return
# Initialize text splitter
self.text_splitter = RecursiveCharacterTextSplitter(
chunk_size=800,
chunk_overlap=100,
length_function=len,
separators=["\n\n", "\n", ". ", " ", ""]
)
def get_collection_count(self):
"""Get number of documents in collection"""
try:
return self.collection.count() if self.collection else 0
except:
return 0
def load_documents_from_folder(self, folder_path="documents"):
"""Load documents from folder"""
if not os.path.exists(folder_path):
return []
txt_files = [f for f in os.listdir(folder_path) if f.endswith('.txt')]
if not txt_files:
return []
all_chunks = []
for filename in txt_files:
filepath = os.path.join(folder_path, filename)
try:
with open(filepath, 'r', encoding='utf-8') as f:
content = f.read().strip()
if content:
chunks = self.text_splitter.split_text(content)
for i, chunk in enumerate(chunks):
all_chunks.append({
'content': chunk,
'source_file': filename,
'chunk_index': i,
'char_count': len(chunk)
})
except Exception as e:
st.error(f"Error reading {filename}: {e}")
return all_chunks
def index_documents(self, document_folder="documents"):
"""Index documents with progress bar"""
if not self.model or not self.client:
return False
chunks = self.load_documents_from_folder(document_folder)
if not chunks:
return False
# Clear existing collection
try:
self.client.delete_collection(self.collection_name)
self.collection = self.client.create_collection(self.collection_name)
except:
pass
# Create embeddings with progress bar
progress_bar = st.progress(0)
status_text = st.empty()
chunk_texts = [chunk['content'] for chunk in chunks]
try:
status_text.text("Creating embeddings...")
embeddings = self.model.encode(chunk_texts, show_progress_bar=False)
status_text.text("Storing in database...")
for i, (chunk, embedding) in enumerate(zip(chunks, embeddings)):
chunk_id = f"{chunk['source_file']}_{chunk['chunk_index']}"
metadata = {
"source_file": chunk['source_file'],
"chunk_index": chunk['chunk_index'],
"char_count": chunk['char_count']
}
self.collection.add(
documents=[chunk['content']],
ids=[chunk_id],
embeddings=[embedding.tolist()],
metadatas=[metadata]
)
progress_bar.progress((i + 1) / len(chunks))
progress_bar.empty()
status_text.empty()
return True
except Exception as e:
st.error(f"Error during indexing: {e}")
progress_bar.empty()
status_text.empty()
return False
def expand_query_with_family_terms(self, query):
"""Expand query to include family relationship synonyms"""
family_mappings = {
'mother': ['mama', 'mom', 'ammi'],
'mama': ['mother', 'mom', 'ammi'],
'father': ['papa', 'dad', 'abbu'],
'papa': ['father', 'dad', 'abbu'],
'brother': ['bhai', 'bro'],
'bhai': ['brother', 'bro'],
'sister': ['behn', 'sis'],
'behn': ['sister', 'sis']
}
expanded_terms = [query]
query_lower = query.lower()
for key, synonyms in family_mappings.items():
if key in query_lower:
for synonym in synonyms:
expanded_terms.append(query_lower.replace(key, synonym))
return expanded_terms
def search(self, query, n_results=5):
"""Search for relevant chunks with family relationship mapping"""
if not self.model or not self.collection:
return None
try:
# Expand query with family terms
expanded_queries = self.expand_query_with_family_terms(query)
all_results = []
# Search with all expanded terms
for search_query in expanded_queries:
query_embedding = self.model.encode([search_query])[0].tolist()
results = self.collection.query(
query_embeddings=[query_embedding],
n_results=n_results
)
if results['documents'][0]:
for chunk, distance, metadata in zip(
results['documents'][0],
results['distances'][0],
results['metadatas'][0]
):
similarity = max(0, 1 - distance)
all_results.append({
'content': chunk,
'metadata': metadata,
'similarity': similarity,
'query_used': search_query
})
if not all_results:
return None
# Remove duplicates and sort by similarity
seen_chunks = set()
unique_results = []
for result in all_results:
chunk_id = f"{result['metadata']['source_file']}_{result['content'][:50]}"
if chunk_id not in seen_chunks:
seen_chunks.add(chunk_id)
unique_results.append(result)
# Sort by similarity and take top results
unique_results.sort(key=lambda x: x['similarity'], reverse=True)
search_results = unique_results[:n_results]
# Debug: Show search results for troubleshooting
print(f"Search for '{query}' (expanded to {len(expanded_queries)} terms) found {len(search_results)} results")
for i, result in enumerate(search_results[:3]):
print(f" {i+1}. Similarity: {result['similarity']:.3f} | Source: {result['metadata']['source_file']} | Query: {result['query_used']}")
print(f" Content preview: {result['content'][:100]}...")
return search_results
except Exception as e:
st.error(f"Search error: {e}")
return None
def extract_direct_answer(self, query, content):
"""Extract direct answer from content"""
query_lower = query.lower()
sentences = re.split(r'[.!?]+', content)
sentences = [s.strip() for s in sentences if len(s.strip()) > 20]
query_words = set(query_lower.split())
scored_sentences = []
for sentence in sentences:
sentence_words = set(sentence.lower().split())
exact_matches = len(query_words.intersection(sentence_words))
# Bonus scoring for key terms
bonus_score = 0
if '401k' in query_lower and ('401' in sentence.lower() or 'retirement' in sentence.lower()):
bonus_score += 3
if 'sick' in query_lower and 'sick' in sentence.lower():
bonus_score += 3
if 'vacation' in query_lower and 'vacation' in sentence.lower():
bonus_score += 3
total_score = exact_matches * 2 + bonus_score
if total_score > 0:
scored_sentences.append((sentence, total_score))
if scored_sentences:
scored_sentences.sort(key=lambda x: x[1], reverse=True)
best_sentence = scored_sentences[0][0]
if not best_sentence.endswith('.'):
best_sentence += '.'
return best_sentence
# Fallback
for sentence in sentences:
if len(sentence) > 30:
return sentence + ('.' if not sentence.endswith('.') else '')
return content[:200] + "..."
def generate_answer(self, query, search_results, use_ai_enhancement=True, unlimited_tokens=False):
"""Generate both AI and extracted answers with proper token handling"""
if not search_results:
return {
'ai_answer': "No information found in documents.",
'extracted_answer': "No information found in documents.",
'sources': [],
'confidence': 0,
'has_both': False
}
best_result = search_results[0]
sources = list(set([r['metadata']['source_file'] for r in search_results[:2]]))
avg_confidence = sum(r['similarity'] for r in search_results[:2]) / len(search_results[:2])
# Always generate extracted answer
extracted_answer = self.extract_direct_answer(query, best_result['content'])
# Try AI answer if requested and API key available
ai_answer = None
openrouter_key = os.environ.get("OPENROUTER_API_KEY")
if use_ai_enhancement and openrouter_key:
# Build context from search results
context = "\n\n".join([f"Source: {r['metadata']['source_file']}\nContent: {r['content']}"
for r in search_results[:3]])
# Create focused prompt for rich, engaging family responses
if unlimited_tokens:
prompt = f"""You are a warm, caring family assistant who knows everyone well. Based on the family information below, provide a rich, detailed, and engaging response.
Family Document Context:
{context}
Question: {query}
Instructions:
- Use the document information as your foundation
- Expand with logical personality traits and qualities someone like this would have
- Add 3-4 additional lines of thoughtful insights about their character
- Use 5-6 relevant emojis throughout the response to make it warm and engaging
- Write in a caring, family-friend tone
- If someone asks about relationships (like "mother" = "mama"), make those connections
- Make the response feel personal and detailed, not just a basic fact
- Include both strengths and endearing qualities
- Keep it warm but informative (4-6 sentences total)
- Sprinkle emojis naturally throughout, not just at the end
Remember: You're helping someone learn about their family members in a meaningful way! π"""
max_tokens = 400 # Increased for richer responses
temperature = 0.3 # Slightly more creative
else:
# Shorter but still enhanced prompt for conservative mode
prompt = f"""Based on this family info: {extracted_answer}
Question: {query}
Give a warm, detailed answer with 3-4 emojis spread throughout. Add 2-3 more qualities this person likely has. Make it caring and personal! π"""
max_tokens = 150 # Better than 50 for family context
temperature = 0.2
try:
response = requests.post(
"https://openrouter.ai/api/v1/chat/completions",
headers={
"Authorization": f"Bearer {openrouter_key}",
"Content-Type": "application/json",
"HTTP-Referer": "https://huggingface.co/spaces",
"X-Title": "RAG Chatbot"
},
json={
"model": "openai/gpt-3.5-turbo",
"messages": [{"role": "user", "content": prompt}],
"max_tokens": max_tokens,
"temperature": temperature
},
timeout=15
)
if response.status_code == 200:
ai_response = response.json()['choices'][0]['message']['content'].strip()
ai_answer = ai_response if len(ai_response) > 10 else extracted_answer
else:
# Log the actual error for debugging
error_detail = ""
try:
error_detail = response.json().get('error', {}).get('message', '')
except:
pass
if response.status_code == 402:
st.warning("π³ OpenRouter credits exhausted. Using extracted answers only.")
elif response.status_code == 429:
st.warning("β±οΈ Rate limit reached. Using extracted answers only.")
elif response.status_code == 401:
st.error("π Invalid API key. Check your OpenRouter key.")
elif response.status_code == 400:
st.error(f"β Bad request: {error_detail}")
else:
st.warning(f"API Error {response.status_code}: {error_detail}. Using extracted answers only.")
except requests.exceptions.Timeout:
st.warning("β±οΈ API timeout. Using extracted answers only.")
except Exception as e:
st.warning(f"API Exception: {str(e)}. Using extracted answers only.")
return {
'ai_answer': ai_answer,
'extracted_answer': extracted_answer,
'sources': sources,
'confidence': avg_confidence,
'has_both': ai_answer is not None
}
def get_general_ai_response(query, unlimited_tokens=False):
"""Get AI response for general questions with family-friendly enhancement"""
openrouter_key = os.environ.get("OPENROUTER_API_KEY")
if not openrouter_key:
return "I can only answer questions about your family members from the uploaded documents. Please add an OpenRouter API key for general conversations. π"
try:
# Adjust parameters based on token availability
if unlimited_tokens:
max_tokens = 350 # Good limit for detailed family responses
temperature = 0.5
prompt = f"""You are a caring family assistant. Someone is asking about their family but I couldn't find specific information in their family documents.
Question: {query}
Please provide a warm, helpful response that:
- Acknowledges I don't have specific information about their family member
- Suggests they might want to add more details to their family profiles
- Offers to help in other ways
- Uses a caring, family-friendly tone with appropriate emojis
- Keep it supportive and understanding π"""
else:
max_tokens = 100 # Reasonable for conservative mode
temperature = 0.4
prompt = f"Family question: {query[:100]} - I don't have info about this family member. Give a caring, helpful response with emojis π"
response = requests.post(
"https://openrouter.ai/api/v1/chat/completions",
headers={
"Authorization": f"Bearer {openrouter_key}",
"Content-Type": "application/json",
"HTTP-Referer": "https://huggingface.co/spaces",
"X-Title": "RAG Chatbot"
},
json={
"model": "openai/gpt-3.5-turbo",
"messages": [{"role": "user", "content": prompt}],
"max_tokens": max_tokens,
"temperature": temperature
},
timeout=15
)
if response.status_code == 200:
return response.json()['choices'][0]['message']['content'].strip()
else:
# Get detailed error information
error_detail = ""
try:
error_detail = response.json().get('error', {}).get('message', '')
except:
pass
if response.status_code == 402:
return "Sorry, OpenRouter credits exhausted. Please add more credits or top up your account."
elif response.status_code == 429:
return "Rate limit reached. Please try again in a moment."
elif response.status_code == 401:
return "Invalid API key. Please check your OpenRouter API key configuration."
elif response.status_code == 400:
return f"Bad request: {error_detail}. Please try rephrasing your question."
else:
return f"API error (Status: {response.status_code}): {error_detail}. Please try again."
except requests.exceptions.Timeout:
return "Request timeout. Please try again."
except Exception as e:
return f"Error: {str(e)}"
def get_user_id():
"""Get unique ID for this user session"""
if 'user_id' not in st.session_state:
st.session_state.user_id = str(uuid.uuid4())[:8]
return st.session_state.user_id
def update_online_users():
"""Update user status"""
try:
users = {}
if os.path.exists(USERS_FILE):
with open(USERS_FILE, 'r') as f:
users = json.load(f)
user_id = get_user_id()
users[user_id] = {
'last_seen': datetime.now().isoformat(),
'name': f'User-{user_id}',
'session_start': users.get(user_id, {}).get('session_start', datetime.now().isoformat())
}
# Clean up old users
current_time = datetime.now()
active_users = {}
for uid, data in users.items():
try:
last_seen = datetime.fromisoformat(data['last_seen'])
if current_time - last_seen < timedelta(minutes=5):
active_users[uid] = data
except:
continue
with open(USERS_FILE, 'w') as f:
json.dump(active_users, f, indent=2)
return len(active_users)
except:
return 1
def load_chat_history():
"""Load chat history"""
try:
if os.path.exists(HISTORY_FILE):
with open(HISTORY_FILE, 'r', encoding='utf-8') as f:
return json.load(f)
except:
pass
return []
def save_chat_history(messages):
"""Save chat history"""
try:
with open(HISTORY_FILE, 'w', encoding='utf-8') as f:
json.dump(messages, f, ensure_ascii=False, indent=2)
except Exception as e:
st.error(f"Error saving history: {e}")
def start_new_chat():
"""Start new chat session"""
st.session_state.messages = []
st.session_state.session_id = str(uuid.uuid4())
# ================= MAIN APP =================
# Initialize session state
if "messages" not in st.session_state:
st.session_state.messages = load_chat_history()
if "session_id" not in st.session_state:
st.session_state.session_id = str(uuid.uuid4())
# Initialize RAG system
rag_system = initialize_rag_system()
# Header with dark mode toggle
col1, col2 = st.columns([4, 1])
with col1:
st.title("RAG Chat Flow β")
st.caption("Ask questions about your documents with AI-powered retrieval")
with col2:
# Dark mode toggle button
mode_text = "π Light" if st.session_state.dark_mode else "π Dark"
if st.button(mode_text, use_container_width=True):
st.session_state.dark_mode = not st.session_state.dark_mode
st.rerun()
# Sidebar
with st.sidebar:
# New Chat Button
if st.button("β New Chat", use_container_width=True, type="primary"):
start_new_chat()
st.rerun()
st.divider()
# Dark Mode Toggle in Sidebar too
st.header("π¨ Theme")
theme_status = "Dark Mode β¨" if st.session_state.dark_mode else "Light Mode βοΈ"
if st.button(f"π Switch to {'Light' if st.session_state.dark_mode else 'Dark'} Mode", use_container_width=True):
st.session_state.dark_mode = not st.session_state.dark_mode
st.rerun()
st.info(f"Current: {theme_status}")
st.divider()
# Personality Questions Section
st.header("π Personality Questions")
# Name input for personalizing questions
name_input = st.text_input("Enter name for personalized questions:", placeholder="First name only", help="Replace [name] in questions with this name")
if name_input.strip():
name = name_input.strip()
st.markdown(f"""
<div class="personality-section">
<strong>π« Quick Questions for {name}:</strong><br>
<small>Click any question to ask about {name}</small>
</div>
""", unsafe_allow_html=True)
# Display personality questions as clickable buttons
for i, question in enumerate(PERSONALITY_QUESTIONS):
formatted_question = question.replace("[name]", name)
if st.button(formatted_question, key=f"pq_{i}", use_container_width=True):
# Add the question to chat and set flag to process it
user_message = {"role": "user", "content": formatted_question}
st.session_state.messages.append(user_message)
st.session_state.process_personality_question = formatted_question
st.rerun()
else:
st.markdown("""
<div class="personality-section">
<strong>π« Sample Questions:</strong><br>
<small>Enter a name above to personalize these questions</small>
</div>
""", unsafe_allow_html=True)
# Show sample questions without names
for question in PERSONALITY_QUESTIONS[:5]: # Show first 5 as examples
st.markdown(f"β’ {question}")
st.divider()
# GitHub Integration
st.header("π GitHub Integration")
github_status = check_github_status()
if github_status["status"] == "connected":
st.markdown(f"""
<div class="github-status">
<strong>π’ GitHub:</strong> {github_status['message']}<br>
<strong>π Repo:</strong> family-profiles (private)
</div>
""", unsafe_allow_html=True)
# Sync from GitHub button
if st.button("π Sync from GitHub", use_container_width=True):
if clone_github_repo():
# Auto-index after successful sync
if rag_system and rag_system.model:
with st.spinner("Auto-indexing synced documents..."):
if rag_system.index_documents("documents"):
st.success("β
Documents synced and indexed!")
st.rerun()
else:
st.warning("β οΈ Sync successful but indexing failed")
else:
color_map = {"red": "π΄", "orange": "π ", "green": "π’"}
color_icon = color_map.get(github_status["color"], "π΄")
st.markdown(f"""
<div class="github-status">
<strong>{color_icon} GitHub:</strong> {github_status['message']}<br>
<strong>π Setup:</strong> Add GITHUB_TOKEN to Hugging Face secrets
</div>
""", unsafe_allow_html=True)
st.divider()
# Document Management
st.header("π Document Management")
if rag_system and rag_system.model:
doc_count = rag_system.get_collection_count()
if doc_count > 0:
st.markdown(f"""
<div class="document-status">
<strong>π Documents Indexed:</strong> {doc_count} chunks<br>
<strong>π Status:</strong> Ready for queries
</div>
""", unsafe_allow_html=True)
else:
st.warning("No documents indexed. Sync from GitHub or upload documents to get started.")
# Document indexing
if st.button("π Re-index Documents", use_container_width=True):
with st.spinner("Indexing documents..."):
if rag_system.index_documents("documents"):
st.success("Documents indexed successfully!")
st.rerun()
else:
st.error("Failed to index documents. Check your documents folder.")
# Show document count only (hidden)
if os.path.exists("documents"):
txt_files = [f for f in os.listdir("documents") if f.endswith('.txt')]
if txt_files:
st.info(f"π {len(txt_files)} documents loaded (hidden)")
# Manual upload interface (fallback)
st.subheader("π€ Manual Upload")
uploaded_files = st.file_uploader(
"Upload text files (fallback)",
type=['txt'],
accept_multiple_files=True,
help="Upload .txt files if GitHub sync is not available"
)
if uploaded_files:
if st.button("πΎ Save & Index Files"):
os.makedirs("documents", exist_ok=True)
saved_files = []
for uploaded_file in uploaded_files:
file_path = os.path.join("documents", uploaded_file.name)
with open(file_path, "wb") as f:
f.write(uploaded_file.getbuffer())
saved_files.append(uploaded_file.name)
st.success(f"Saved {len(saved_files)} files!")
# Auto-index
with st.spinner("Auto-indexing new documents..."):
if rag_system.index_documents("documents"):
st.success("Documents indexed successfully!")
st.rerun()
else:
st.error("RAG system initialization failed. Check your setup.")
st.divider()
# Online Users
st.header("π₯ Online Users")
online_count = update_online_users()
if online_count == 1:
st.success("π’ Just you online")
else:
st.success(f"π’ {online_count} people online")
st.divider()
# Settings
st.header("βοΈ Settings")
# API Status with better checking
openrouter_key = os.environ.get("OPENROUTER_API_KEY")
if openrouter_key:
st.success(" β
API Connected")
# Quick API test
if st.button("Test API Connection", use_container_width=True):
try:
test_response = requests.post(
"https://openrouter.ai/api/v1/chat/completions",
headers={
"Authorization": f"Bearer {openrouter_key}",
"Content-Type": "application/json"
},
json={
"model": "openai/gpt-3.5-turbo",
"messages": [{"role": "user", "content": "test"}],
"max_tokens": 5
},
timeout=5
)
if test_response.status_code == 200:
st.success("β
API working correctly!")
elif test_response.status_code == 402:
st.error("β Credits exhausted")
elif test_response.status_code == 429:
st.warning("β±οΈ Rate limited")
else:
st.error(f"β API Error: {test_response.status_code}")
except Exception as e:
st.error(f"β API Test Failed: {str(e)}")
else:
st.error("β No OpenRouter API Key")
st.info("Add OPENROUTER_API_KEY in Hugging Face Space settings β Variables and secrets")
# Enhanced Settings
st.subheader("π Token Settings")
unlimited_tokens = st.checkbox("π₯ Unlimited Tokens Mode", value=True, help="Use higher token limits for detailed responses")
use_ai_enhancement = st.checkbox("πΎ AI Enhancement", value=bool(openrouter_key), help="Enhance answers with AI when documents are found")
st.subheader("ποΈ Display Settings")
show_sources = st.checkbox("π Show Sources", value=True)
show_confidence = st.checkbox("π― Show Confidence Scores", value=True)
# Token mode indicator
if unlimited_tokens:
st.success("π₯ Unlimited mode: Detailed responses enabled")
else:
st.info("π° Conservative mode: Limited tokens to save credits")
st.divider()
# Chat History Controls
st.header("πΎ Chat History")
if st.session_state.messages:
st.info(f"Messages: {len(st.session_state.messages)}")
col1, col2 = st.columns(2)
with col1:
if st.button("πΎ Save", use_container_width=True):
save_chat_history(st.session_state.messages)
st.success("Saved!")
with col2:
if st.button("ποΈ Clear", use_container_width=True):
start_new_chat()
st.success("Cleared!")
st.rerun()
# ================= MAIN CHAT AREA =================
# Display chat messages
for message in st.session_state.messages:
with st.chat_message(message["role"]):
if message["role"] == "assistant" and "rag_info" in message:
# Display AI answer
st.markdown(message["content"])
# Display RAG information
rag_info = message["rag_info"]
if show_sources and rag_info.get("sources"):
confidence_text = f"{rag_info['confidence']*100:.1f}%" if show_confidence else ""
st.markdown(f"""
<div class="rag-attribution">
<strong>π Sources:</strong> {', '.join(rag_info['sources'])}<br>
<strong>π― Confidence:</strong> {confidence_text}
</div>
""", unsafe_allow_html=True)
# Show extracted answer if different
if rag_info.get("extracted_answer") and rag_info["extracted_answer"] != message["content"]:
st.markdown("**π Extracted Answer:**")
st.markdown(f"_{rag_info['extracted_answer']}_")
else:
st.markdown(message["content"])
# Check if we need to process a personality question
if hasattr(st.session_state, 'process_personality_question'):
prompt = st.session_state.process_personality_question
del st.session_state.process_personality_question # Clear the flag
# Display user message
with st.chat_message("user"):
st.markdown(prompt)
# Process the question using the same logic as chat input
# Update user tracking
update_online_users()
# Get RAG response
with st.chat_message("assistant"):
if rag_system and rag_system.model and rag_system.get_collection_count() > 0:
# Search documents first
search_results = rag_system.search(prompt, n_results=5)
# Debug output for troubleshooting
if search_results:
st.info(f"π Found {len(search_results)} potential matches. Best similarity: {search_results[0]['similarity']:.3f}")
else:
st.warning("π No search results returned from vector database")
# Check if we found relevant documents (very low threshold)
if search_results and search_results[0]['similarity'] > 0.001: # Ultra-low threshold
# Generate document-based answer
result = rag_system.generate_answer(
prompt,
search_results,
use_ai_enhancement=use_ai_enhancement,
unlimited_tokens=unlimited_tokens
)
# Display AI answer or extracted answer
if use_ai_enhancement and result['has_both']:
answer_text = result['ai_answer']
st.markdown(f"πΎ **AI Enhanced Answer:** {answer_text}")
# Also show extracted answer for comparison if different
if result['extracted_answer'] != answer_text:
with st.expander("π View Extracted Answer"):
st.markdown(result['extracted_answer'])
else:
answer_text = result['extracted_answer']
st.markdown(f"π **Document Answer:** {answer_text}")
# Show why AI enhancement wasn't used
if use_ai_enhancement and not result['has_both']:
st.info("π‘ AI enhancement failed - showing extracted answer from documents")
# Show RAG info with more details
if show_sources and result['sources']:
confidence_text = f"{result['confidence']*100:.1f}%" if show_confidence else ""
st.markdown(f"""
<div class="rag-attribution">
<strong>π Sources:</strong> {', '.join(result['sources'])}<br>
<strong>π― Confidence:</strong> {confidence_text}<br>
<strong>π Found:</strong> {len(search_results)} relevant sections<br>
<strong>π Best Match:</strong> {search_results[0]['similarity']:.3f} similarity
</div>
""", unsafe_allow_html=True)
# Add to messages with RAG info
assistant_message = {
"role": "assistant",
"content": answer_text,
"rag_info": {
"sources": result['sources'],
"confidence": result['confidence'],
"extracted_answer": result['extracted_answer'],
"has_ai": result['has_both']
}
}
else:
# No relevant documents found - show debug info
if search_results:
st.warning(f"π Found documents but similarity too low (best: {search_results[0]['similarity']:.3f}). Using general AI...")
else:
st.warning("π No documents found in search. Using general AI...")
general_response = get_general_ai_response(prompt, unlimited_tokens=unlimited_tokens)
st.markdown(f"π¬ **General AI:** {general_response}")
assistant_message = {
"role": "assistant",
"content": general_response,
"rag_info": {"sources": [], "confidence": 0, "mode": "general"}
}
else:
# RAG system not ready - use general AI
if rag_system and rag_system.get_collection_count() == 0:
st.warning("No documents indexed. Sync from GitHub or upload documents first...")
else:
st.error("RAG system not ready. Using general AI mode...")
general_response = get_general_ai_response(prompt, unlimited_tokens=unlimited_tokens)
st.markdown(f"π¬ **General AI:** {general_response}")
assistant_message = {
"role": "assistant",
"content": general_response,
"rag_info": {"sources": [], "confidence": 0, "mode": "general"}
}
# Add assistant message to history
st.session_state.messages.append(assistant_message)
# Auto-save
save_chat_history(st.session_state.messages)
# Chat input
if prompt := st.chat_input("Ask questions about your documents..."):
# Update user tracking
update_online_users()
# Add user message
user_message = {"role": "user", "content": prompt}
st.session_state.messages.append(user_message)
# Display user message
with st.chat_message("user"):
st.markdown(prompt)
# Get RAG response
with st.chat_message("assistant"):
if rag_system and rag_system.model and rag_system.get_collection_count() > 0:
# Search documents first
search_results = rag_system.search(prompt, n_results=5)
# Debug output for troubleshooting
if search_results:
st.info(f"π Found {len(search_results)} potential matches. Best similarity: {search_results[0]['similarity']:.3f}")
else:
st.warning("π No search results returned from vector database")
# Check if we found relevant documents (very low threshold)
if search_results and search_results[0]['similarity'] > 0.001: # Ultra-low threshold
# Generate document-based answer
result = rag_system.generate_answer(
prompt,
search_results,
use_ai_enhancement=use_ai_enhancement,
unlimited_tokens=unlimited_tokens
)
# Display AI answer or extracted answer
if use_ai_enhancement and result['has_both']:
answer_text = result['ai_answer']
st.markdown(f"πΎ **AI Enhanced Answer:** {answer_text}")
# Also show extracted answer for comparison if different
if result['extracted_answer'] != answer_text:
with st.expander("π View Extracted Answer"):
st.markdown(result['extracted_answer'])
else:
answer_text = result['extracted_answer']
st.markdown(f"π **Document Answer:** {answer_text}")
# Show why AI enhancement wasn't used
if use_ai_enhancement and not result['has_both']:
st.info("π‘ AI enhancement failed - showing extracted answer from documents")
# Show RAG info with more details
if show_sources and result['sources']:
confidence_text = f"{result['confidence']*100:.1f}%" if show_confidence else ""
st.markdown(f"""
<div class="rag-attribution">
<strong>π Sources:</strong> {', '.join(result['sources'])}<br>
<strong>π― Confidence:</strong> {confidence_text}<br>
<strong>π Found:</strong> {len(search_results)} relevant sections<br>
<strong>π Best Match:</strong> {search_results[0]['similarity']:.3f} similarity
</div>
""", unsafe_allow_html=True)
# Add to messages with RAG info
assistant_message = {
"role": "assistant",
"content": answer_text,
"rag_info": {
"sources": result['sources'],
"confidence": result['confidence'],
"extracted_answer": result['extracted_answer'],
"has_ai": result['has_both']
}
}
else:
# No relevant documents found - show debug info
if search_results:
st.warning(f"π Found documents but similarity too low (best: {search_results[0]['similarity']:.3f}). Using general AI...")
else:
st.warning("π No documents found in search. Using general AI...")
general_response = get_general_ai_response(prompt, unlimited_tokens=unlimited_tokens)
st.markdown(f"π¬ **General AI:** {general_response}")
assistant_message = {
"role": "assistant",
"content": general_response,
"rag_info": {"sources": [], "confidence": 0, "mode": "general"}
}
else:
# RAG system not ready - use general AI
if rag_system and rag_system.get_collection_count() == 0:
st.warning("No documents indexed. Sync from GitHub or upload documents first...")
else:
st.error("RAG system not ready. Using general AI mode...")
general_response = get_general_ai_response(prompt, unlimited_tokens=unlimited_tokens)
st.markdown(f"π¬ **General AI:** {general_response}")
assistant_message = {
"role": "assistant",
"content": general_response,
"rag_info": {"sources": [], "confidence": 0, "mode": "general"}
}
# Add assistant message to history
st.session_state.messages.append(assistant_message)
# Auto-save
save_chat_history(st.session_state.messages)
# Footer info
if rag_system and rag_system.model:
doc_count = rag_system.get_collection_count()
token_mode = "π₯ Unlimited" if unlimited_tokens else "π° Conservative"
github_status = check_github_status()
github_icon = "π’" if github_status["status"] == "connected" else "π΄"
theme_icon = "π" if st.session_state.dark_mode else "βοΈ"
st.caption(f"π Knowledge Base: {doc_count} indexed chunks | π RAG System Active | {token_mode} Token Mode | {github_icon} GitHub {github_status['status'].title()} | {theme_icon} {theme_status}") |