File size: 8,185 Bytes
f6bc5f2
 
 
 
 
 
 
 
 
 
9a4a0f6
f6bc5f2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
# app.py — Gradio UI + llama-server wrapper для Qwen3-Embedding-0.6B GGUF
import os, time, subprocess, sys, signal
import requests
import json
import numpy as np
import gradio as gr
from huggingface_hub import hf_hub_download

# --- Параметры модели (конкретные имена; при необходимости замените)
REPO = "Qwen/Qwen3-Embedding-0.6B-GGUF"
FNAME = "Qwen3-Embedding-0.6B-Q8_0.gguf"
LOCAL_MODEL_PATH = os.path.join(os.getcwd(), FNAME)

# --- llama-server бинари (из собранного llama.cpp)
LLAMA_SERVER_BIN = os.path.join("llama.cpp", "build", "bin", "llama-server")
LLAMA_PORT = 8080
LLAMA_HOST = "127.0.0.1"
LLAMA_URL = f"http://{LLAMA_HOST}:{LLAMA_PORT}"

def download_model():
    if os.path.exists(LOCAL_MODEL_PATH) and os.path.getsize(LOCAL_MODEL_PATH) > 1000_000_000:
        print("Model already exists:", LOCAL_MODEL_PATH)
        return LOCAL_MODEL_PATH
    print("Downloading model (this can take a while)...")
    path = hf_hub_download(repo_id=REPO, filename=FNAME, local_dir=".", resume_download=True)
    print("Downloaded to:", path)
    return path

def build_llama_if_needed():
    # Если бинарник уже есть и исполняемый — пропускаем
    if os.path.exists(LLAMA_SERVER_BIN) and os.access(LLAMA_SERVER_BIN, os.X_OK):
        print("llama-server already built:", LLAMA_SERVER_BIN)
        return
    # Иначе запускаем build скрипт (должен быть в репо)
    print("Building llama.cpp (may take many minutes)...")
    res = subprocess.run(["bash", "build_llama.sh"], check=False)
    if res.returncode != 0:
        print("Build failed with code", res.returncode)
        raise SystemExit("Failed to build llama.cpp")

def start_llama_server(model_path):
    cmd = [
        LLAMA_SERVER_BIN,
        "-m", model_path,
        "--embedding",
        "--pooling", "last",
        "--host", LLAMA_HOST,
        "--port", str(LLAMA_PORT),
        "--verbose"
    ]
    print("Starting llama-server:", " ".join(cmd))
    proc = subprocess.Popen(cmd, stdout=subprocess.PIPE, stderr=subprocess.PIPE, text=True)
    return proc

def wait_server_ready(timeout=180):
    start = time.time()
    while time.time() - start < timeout:
        try:
            r = requests.get(LLAMA_URL + "/v1/models", timeout=3)
            if r.status_code == 200:
                print("Server ready")
                return True
        except Exception:
            pass
        time.sleep(1)
    return False

def get_embeddings_from_server(texts):
    url = LLAMA_URL + "/v1/embeddings"
    payload = {"input": texts}
    headers = {"Content-Type": "application/json"}
    r = requests.post(url, json=payload, headers=headers, timeout=120)
    if r.status_code != 200:
        raise RuntimeError(f"Embeddings request failed: {r.status_code} {r.text}")
    data = r.json()
    # OpenAI-like response parsing
    if "data" in data and len(data["data"]) >= 1 and "embedding" in data["data"][0]:
        embeddings = [np.array(item["embedding"], dtype=np.float32) for item in data["data"]]
        return embeddings
    if "embedding" in data:
        return [np.array(data["embedding"], dtype=np.float32)]
    raise RuntimeError("Unexpected embeddings response: " + str(data))

def cosine(a, b):
    # safe cosine
    na = np.linalg.norm(a)
    nb = np.linalg.norm(b)
    if na == 0 or nb == 0:
        return 0.0
    return float(np.dot(a, b) / (na * nb))

# --- Startup sequence: download -> build if needed -> start server
model_path = download_model()
build_llama_if_needed()
proc = start_llama_server(model_path)
if not wait_server_ready(timeout=240):
    stderr = ""
    try:
        stderr = proc.stderr.read()[:2000]
    except Exception:
        pass
    raise SystemExit("llama-server did not become ready in time. Stderr head:\n" + stderr)

# --- Boolean-pаттерны (простая проверка ключевых слов) ---
import re
def _norm_words(text):
    text = text.lower()
    text = re.sub(r"[^0-9a-zа-яё\s]", " ", text, flags=re.I)
    words = [w for w in text.split() if len(w) > 1]
    return words

def match_boolean_pattern(pattern: str, message: str) -> bool:
    msg_words = set(_norm_words(message))
    pat = pattern.strip()
    def check_or_group(group_text):
        parts = [p.strip() for p in re.split(r"\bOR\b", group_text, flags=re.I)]
        for p in parts:
            if p.lower() in msg_words:
                return True
        return False

    remaining = pat
    and_conditions = []
    for m in re.finditer(r"\((.*?)\)", pat):
        group = m.group(1)
        and_conditions.append(("or_group", group))
        remaining = remaining.replace(m.group(0), " ")
    top_tokens = re.split(r"\bAND\b", remaining, flags=re.I)
    for t in top_tokens:
        t = t.strip()
        if not t:
            continue
        if re.search(r"\bOR\b", t, flags=re.I):
            and_conditions.append(("or_group", t))
        else:
            w = t.split()[0].strip()
            if w:
                and_conditions.append(("word", w))
    for typ, val in and_conditions:
        if typ == "or_group":
            if not check_or_group(val):
                return False
        else:
            if val.lower() not in msg_words:
                return False
    return True

# --- Gradio UI ---
def similarity_ui(pattern, message, use_boolean=False, show_raw=False):
    if use_boolean:
        ok = match_boolean_pattern(pattern, message)
        if not ok:
            return "Boolean check: FAILED (no keyword match)"
    emb_list = get_embeddings_from_server([pattern, message])
    s = cosine(emb_list[0], emb_list[1])
    if show_raw:
        return f"cosine={s:.4f}\n\npattern_emb(first10)={emb_list[0][:10].tolist()}\nmessage_emb(first10)={emb_list[1][:10].tolist()}"
    return f"{s:.4f}"

def search_ui(query, docs_text, topk):
    docs = [d.strip() for d in docs_text.splitlines() if d.strip()]
    if not docs:
        return "Empty corpus"
    embs = get_embeddings_from_server(docs + [query])
    D = np.stack(embs[:-1])
    q = embs[-1]
    scores = (D @ q) / (np.linalg.norm(D, axis=1) * np.linalg.norm(q))
    order = np.argsort(scores)[::-1][:int(topk)]
    out_lines = []
    for rank, idx in enumerate(order, start=1):
        out_lines.append(f"{rank}. score={scores[idx]:.4f}\n{docs[idx]}")
    return "\n\n".join(out_lines)

demo = gr.Blocks()
with demo:
    gr.Markdown("# Qwen3-Embedding-0.6B GGUF — тест паттерн ↔ сообщение")
    with gr.Tab("Сходство (cosine)"):
        p = gr.Textbox(label="Паттерн", value="Meeting between Trump and Putin")
        m = gr.Textbox(label="Сообщение", value="Встреча Трампа и Путина прошла в Женеве.")
        use_bool = gr.Checkbox(label="Boolean pattern match (быстрая фильтрация)", value=False)
        show_raw = gr.Checkbox(label="Показать первые значения embedding (debug)", value=False)
        btn = gr.Button("Сравнить")
        out = gr.Textbox(label="Результат (cosine или debug)", interactive=False, lines=6)
        btn.click(similarity_ui, inputs=[p, m, use_bool, show_raw], outputs=out)
    with gr.Tab("Семантический поиск"):
        q = gr.Textbox(label="Запрос", value="саммит Трамп Путин")
        corpus = gr.Textbox(label="Корпус (по строкам)", lines=12, value=(
            "Встреча президентов России и США прошла в Женеве.\n"
            "Лукашенко провёл переговоры с Евросоюзом.\n"
            "Джо Байден выступал в Давосе.\n"
            "Футбольный чемпионат прошёл на стадионе."
        ))
        k = gr.Number(label="Top-K", value=3, precision=0)
        btn2 = gr.Button("Найти")
        out2 = gr.Textbox(label="Результаты", lines=12)
        btn2.click(search_ui, inputs=[q, corpus, k], outputs=out2)

demo.launch(server_name="0.0.0.0", server_port=7860)