File size: 8,185 Bytes
f6bc5f2 9a4a0f6 f6bc5f2 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 |
# app.py — Gradio UI + llama-server wrapper для Qwen3-Embedding-0.6B GGUF
import os, time, subprocess, sys, signal
import requests
import json
import numpy as np
import gradio as gr
from huggingface_hub import hf_hub_download
# --- Параметры модели (конкретные имена; при необходимости замените)
REPO = "Qwen/Qwen3-Embedding-0.6B-GGUF"
FNAME = "Qwen3-Embedding-0.6B-Q8_0.gguf"
LOCAL_MODEL_PATH = os.path.join(os.getcwd(), FNAME)
# --- llama-server бинари (из собранного llama.cpp)
LLAMA_SERVER_BIN = os.path.join("llama.cpp", "build", "bin", "llama-server")
LLAMA_PORT = 8080
LLAMA_HOST = "127.0.0.1"
LLAMA_URL = f"http://{LLAMA_HOST}:{LLAMA_PORT}"
def download_model():
if os.path.exists(LOCAL_MODEL_PATH) and os.path.getsize(LOCAL_MODEL_PATH) > 1000_000_000:
print("Model already exists:", LOCAL_MODEL_PATH)
return LOCAL_MODEL_PATH
print("Downloading model (this can take a while)...")
path = hf_hub_download(repo_id=REPO, filename=FNAME, local_dir=".", resume_download=True)
print("Downloaded to:", path)
return path
def build_llama_if_needed():
# Если бинарник уже есть и исполняемый — пропускаем
if os.path.exists(LLAMA_SERVER_BIN) and os.access(LLAMA_SERVER_BIN, os.X_OK):
print("llama-server already built:", LLAMA_SERVER_BIN)
return
# Иначе запускаем build скрипт (должен быть в репо)
print("Building llama.cpp (may take many minutes)...")
res = subprocess.run(["bash", "build_llama.sh"], check=False)
if res.returncode != 0:
print("Build failed with code", res.returncode)
raise SystemExit("Failed to build llama.cpp")
def start_llama_server(model_path):
cmd = [
LLAMA_SERVER_BIN,
"-m", model_path,
"--embedding",
"--pooling", "last",
"--host", LLAMA_HOST,
"--port", str(LLAMA_PORT),
"--verbose"
]
print("Starting llama-server:", " ".join(cmd))
proc = subprocess.Popen(cmd, stdout=subprocess.PIPE, stderr=subprocess.PIPE, text=True)
return proc
def wait_server_ready(timeout=180):
start = time.time()
while time.time() - start < timeout:
try:
r = requests.get(LLAMA_URL + "/v1/models", timeout=3)
if r.status_code == 200:
print("Server ready")
return True
except Exception:
pass
time.sleep(1)
return False
def get_embeddings_from_server(texts):
url = LLAMA_URL + "/v1/embeddings"
payload = {"input": texts}
headers = {"Content-Type": "application/json"}
r = requests.post(url, json=payload, headers=headers, timeout=120)
if r.status_code != 200:
raise RuntimeError(f"Embeddings request failed: {r.status_code} {r.text}")
data = r.json()
# OpenAI-like response parsing
if "data" in data and len(data["data"]) >= 1 and "embedding" in data["data"][0]:
embeddings = [np.array(item["embedding"], dtype=np.float32) for item in data["data"]]
return embeddings
if "embedding" in data:
return [np.array(data["embedding"], dtype=np.float32)]
raise RuntimeError("Unexpected embeddings response: " + str(data))
def cosine(a, b):
# safe cosine
na = np.linalg.norm(a)
nb = np.linalg.norm(b)
if na == 0 or nb == 0:
return 0.0
return float(np.dot(a, b) / (na * nb))
# --- Startup sequence: download -> build if needed -> start server
model_path = download_model()
build_llama_if_needed()
proc = start_llama_server(model_path)
if not wait_server_ready(timeout=240):
stderr = ""
try:
stderr = proc.stderr.read()[:2000]
except Exception:
pass
raise SystemExit("llama-server did not become ready in time. Stderr head:\n" + stderr)
# --- Boolean-pаттерны (простая проверка ключевых слов) ---
import re
def _norm_words(text):
text = text.lower()
text = re.sub(r"[^0-9a-zа-яё\s]", " ", text, flags=re.I)
words = [w for w in text.split() if len(w) > 1]
return words
def match_boolean_pattern(pattern: str, message: str) -> bool:
msg_words = set(_norm_words(message))
pat = pattern.strip()
def check_or_group(group_text):
parts = [p.strip() for p in re.split(r"\bOR\b", group_text, flags=re.I)]
for p in parts:
if p.lower() in msg_words:
return True
return False
remaining = pat
and_conditions = []
for m in re.finditer(r"\((.*?)\)", pat):
group = m.group(1)
and_conditions.append(("or_group", group))
remaining = remaining.replace(m.group(0), " ")
top_tokens = re.split(r"\bAND\b", remaining, flags=re.I)
for t in top_tokens:
t = t.strip()
if not t:
continue
if re.search(r"\bOR\b", t, flags=re.I):
and_conditions.append(("or_group", t))
else:
w = t.split()[0].strip()
if w:
and_conditions.append(("word", w))
for typ, val in and_conditions:
if typ == "or_group":
if not check_or_group(val):
return False
else:
if val.lower() not in msg_words:
return False
return True
# --- Gradio UI ---
def similarity_ui(pattern, message, use_boolean=False, show_raw=False):
if use_boolean:
ok = match_boolean_pattern(pattern, message)
if not ok:
return "Boolean check: FAILED (no keyword match)"
emb_list = get_embeddings_from_server([pattern, message])
s = cosine(emb_list[0], emb_list[1])
if show_raw:
return f"cosine={s:.4f}\n\npattern_emb(first10)={emb_list[0][:10].tolist()}\nmessage_emb(first10)={emb_list[1][:10].tolist()}"
return f"{s:.4f}"
def search_ui(query, docs_text, topk):
docs = [d.strip() for d in docs_text.splitlines() if d.strip()]
if not docs:
return "Empty corpus"
embs = get_embeddings_from_server(docs + [query])
D = np.stack(embs[:-1])
q = embs[-1]
scores = (D @ q) / (np.linalg.norm(D, axis=1) * np.linalg.norm(q))
order = np.argsort(scores)[::-1][:int(topk)]
out_lines = []
for rank, idx in enumerate(order, start=1):
out_lines.append(f"{rank}. score={scores[idx]:.4f}\n{docs[idx]}")
return "\n\n".join(out_lines)
demo = gr.Blocks()
with demo:
gr.Markdown("# Qwen3-Embedding-0.6B GGUF — тест паттерн ↔ сообщение")
with gr.Tab("Сходство (cosine)"):
p = gr.Textbox(label="Паттерн", value="Meeting between Trump and Putin")
m = gr.Textbox(label="Сообщение", value="Встреча Трампа и Путина прошла в Женеве.")
use_bool = gr.Checkbox(label="Boolean pattern match (быстрая фильтрация)", value=False)
show_raw = gr.Checkbox(label="Показать первые значения embedding (debug)", value=False)
btn = gr.Button("Сравнить")
out = gr.Textbox(label="Результат (cosine или debug)", interactive=False, lines=6)
btn.click(similarity_ui, inputs=[p, m, use_bool, show_raw], outputs=out)
with gr.Tab("Семантический поиск"):
q = gr.Textbox(label="Запрос", value="саммит Трамп Путин")
corpus = gr.Textbox(label="Корпус (по строкам)", lines=12, value=(
"Встреча президентов России и США прошла в Женеве.\n"
"Лукашенко провёл переговоры с Евросоюзом.\n"
"Джо Байден выступал в Давосе.\n"
"Футбольный чемпионат прошёл на стадионе."
))
k = gr.Number(label="Top-K", value=3, precision=0)
btn2 = gr.Button("Найти")
out2 = gr.Textbox(label="Результаты", lines=12)
btn2.click(search_ui, inputs=[q, corpus, k], outputs=out2)
demo.launch(server_name="0.0.0.0", server_port=7860)
|