import streamlit as st import pandas as pd from Utility.data_loader import ( load_train_series, load_train_events, load_sample_submission, load_test_series ) st.set_page_config(page_title="Sensor Data Viewer", layout="wide") st.title("Sensor Data Viewer") # --- Sidebar Radio Button --- st.header("Select Dataset to View") option = st.radio( "Choose a dataset:", ("Train Events", "Sample Submission", "Train Series", "Test Series", "Summary") ) # --- Load and Show Data Based on Selection --- df = None if option == "Train Events": df = load_train_events() st.subheader("Train Events") st.dataframe(df.head()) elif option == "Sample Submission": df = load_sample_submission() st.subheader("Sample Submission") st.dataframe(df.head()) elif option == "Train Series": df = load_train_series() st.subheader("Train Series (1M rows sample)") st.dataframe(df.head()) elif option == "Test Series": df = load_test_series() st.subheader("Test Series") st.dataframe(df.head()) elif option == "Summary": st.subheader("Summary of All Key Datasets") with st.expander("📄 Train Events"): df_events = load_train_events() st.dataframe(df_events.head()) st.write("Summary:") st.dataframe(df_events.describe(include="all")) with st.expander("📄 Sample Submission"): df_sample = load_sample_submission() st.dataframe(df_sample.head()) st.write("Summary:") st.dataframe(df_sample.describe(include="all")) with st.expander("📄 Train Series"): df_series = load_train_series() st.dataframe(df_series.head()) st.write("Summary:") st.dataframe(df_series.describe()) with st.expander("📄 Test Series"): df_test = load_test_series() st.dataframe(df_test.head()) st.write("Summary:") st.dataframe(df_test.describe()) # Footer #st.markdown("---") # st.caption("Developed by [Name] | Streamlit App for Sensor Data Exploration")