varalakshmi55 commited on
Commit
dddb8c5
·
verified ·
1 Parent(s): d8d774a

Upload app.py

Browse files
Files changed (1) hide show
  1. app.py +98 -0
app.py ADDED
@@ -0,0 +1,98 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import streamlit as st
2
+ from sklearn.datasets import make_moons, make_circles, make_blobs
3
+ from sklearn.model_selection import train_test_split
4
+ from sklearn.preprocessing import StandardScaler
5
+ import numpy as np
6
+ import tensorflow
7
+ from tensorflow import keras
8
+ # from tensorflow.keras.models import Sequential
9
+ # from tensorflow.keras.layers import Dense
10
+ # from tensorflow.keras.optimizers import Adam
11
+ import matplotlib.pyplot as plt
12
+
13
+
14
+ st.title("Neural Network Hyperparameters")
15
+
16
+ # Dataset selection
17
+ dataset = st.selectbox("Select Dataset", ["moons", "circles", "blobs"])
18
+
19
+ # Learning rate
20
+ learning_rate = st.number_input("Learning Rate", value=0.01, format="%.5f")
21
+
22
+ # Activation function
23
+ activation = st.selectbox("Activation Function", ["relu", "sigmoid", "tanh"])
24
+
25
+ # Train-test split
26
+ split_ratio = st.slider("Train-Test Split Ratio", min_value=0.1, max_value=0.9, value=0.8)
27
+
28
+ # Batch size
29
+ batch_size = st.number_input("Batch Size", min_value=1, value=32)
30
+
31
+
32
+
33
+ # Generate dataset
34
+ def generate_data(dataset):
35
+ if dataset == "moons":
36
+ return make_moons(n_samples=1000, noise=0.2, random_state=42)
37
+ elif dataset == "circles":
38
+ return make_circles(n_samples=1000, noise=0.2, factor=0.5, random_state=42)
39
+ elif dataset == "blobs":
40
+ return make_blobs(n_samples=1000, centers=2, random_state=42, cluster_std=1.5)
41
+
42
+ X, y = generate_data(dataset)
43
+ X = StandardScaler().fit_transform(X)
44
+ X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=(1 - split_ratio), random_state=42)
45
+
46
+
47
+
48
+ # Build model
49
+ model = keras.Sequential([
50
+ keras.layers.Dense(10, input_shape=(2,), activation=activation),
51
+ keras.layers.Dense(5, activation=activation),
52
+ keras.layers.Dense(1, activation="sigmoid") # binary classification
53
+ ])
54
+
55
+ optimizer = keras.optimizers.Adam(learning_rate=learning_rate)
56
+ model.compile(optimizer=optimizer, loss='binary_crossentropy', metrics=['accuracy'])
57
+
58
+ # Train model
59
+ history = model.fit(X_train, y_train, epochs=100, batch_size=batch_size,
60
+ validation_data=(X_test, y_test), verbose=0)
61
+
62
+
63
+ #4. Training vs Testing Error Plot
64
+ def plot_loss(history):
65
+ plt.figure(figsize=(8, 4))
66
+ plt.plot(history.history['loss'], label='Train Loss')
67
+ plt.plot(history.history['val_loss'], label='Test Loss')
68
+ plt.xlabel("Epochs")
69
+ plt.ylabel("Loss")
70
+ plt.legend()
71
+ plt.title("Training vs Testing Loss")
72
+ st.pyplot(plt)
73
+
74
+
75
+
76
+ def plot_decision_boundary(model, X, y):
77
+ x_min, x_max = X[:, 0].min() - .5, X[:, 0].max() + .5
78
+ y_min, y_max = X[:, 1].min() - .5, X[:, 1].max() + .5
79
+ xx, yy = np.meshgrid(np.linspace(x_min, x_max, 300),
80
+ np.linspace(y_min, y_max, 300))
81
+ grid = np.c_[xx.ravel(), yy.ravel()]
82
+ preds = model.predict(grid)
83
+ preds = preds.reshape(xx.shape)
84
+
85
+ plt.figure(figsize=(8, 6))
86
+ plt.contourf(xx, yy, preds, alpha=0.7, cmap=plt.cm.RdBu)
87
+ plt.scatter(X[:, 0], X[:, 1], c=y, cmap=plt.cm.RdBu, edgecolors='white')
88
+ plt.title("Decision Boundary")
89
+ st.pyplot(plt)
90
+
91
+
92
+
93
+ if st.button("Train Model"):
94
+ st.title("Neural Network Training Visualizer")
95
+ with st.spinner("Training the model..."):
96
+ # Call training functions
97
+ plot_loss(history)
98
+ plot_decision_boundary(model, X, y)