Spaces:
Runtime error
Runtime error
File size: 15,579 Bytes
f670afc |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 |
# Copyright (C) 2021 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
#
# This work is made available under the Nvidia Source Code License-NC.
# To view a copy of this license, check out LICENSE.md
import torch
import torch.nn.functional as F
import torchvision
from torch import nn, distributed as dist
from imaginaire.losses.info_nce import InfoNCELoss
from imaginaire.utils.distributed import master_only_print as print, \
is_local_master
from imaginaire.utils.misc import apply_imagenet_normalization, to_float
class PerceptualLoss(nn.Module):
r"""Perceptual loss initialization.
Args:
network (str) : The name of the loss network: 'vgg16' | 'vgg19'.
layers (str or list of str) : The layers used to compute the loss.
weights (float or list of float : The loss weights of each layer.
criterion (str): The type of distance function: 'l1' | 'l2'.
resize (bool) : If ``True``, resize the input images to 224x224.
resize_mode (str): Algorithm used for resizing.
num_scales (int): The loss will be evaluated at original size and
this many times downsampled sizes.
per_sample_weight (bool): Output loss for individual samples in the
batch instead of mean loss.
"""
def __init__(self, network='vgg19', layers='relu_4_1', weights=None,
criterion='l1', resize=False, resize_mode='bilinear',
num_scales=1, per_sample_weight=False,
info_nce_temperature=0.07,
info_nce_gather_distributed=True,
info_nce_learn_temperature=True,
info_nce_flatten=True):
super().__init__()
if isinstance(layers, str):
layers = [layers]
if weights is None:
weights = [1.] * len(layers)
elif isinstance(layers, float) or isinstance(layers, int):
weights = [weights]
if dist.is_initialized() and not is_local_master():
# Make sure only the first process in distributed training downloads
# the model, and the others will use the cache
# noinspection PyUnresolvedReferences
torch.distributed.barrier()
assert len(layers) == len(weights), \
'The number of layers (%s) must be equal to ' \
'the number of weights (%s).' % (len(layers), len(weights))
if network == 'vgg19':
self.model = _vgg19(layers)
elif network == 'vgg16':
self.model = _vgg16(layers)
elif network == 'alexnet':
self.model = _alexnet(layers)
elif network == 'inception_v3':
self.model = _inception_v3(layers)
elif network == 'resnet50':
self.model = _resnet50(layers)
elif network == 'robust_resnet50':
self.model = _robust_resnet50(layers)
elif network == 'vgg_face_dag':
self.model = _vgg_face_dag(layers)
else:
raise ValueError('Network %s is not recognized' % network)
if dist.is_initialized() and is_local_master():
# Make sure only the first process in distributed training downloads
# the model, and the others will use the cache
# noinspection PyUnresolvedReferences
torch.distributed.barrier()
self.num_scales = num_scales
self.layers = layers
self.weights = weights
reduction = 'mean' if not per_sample_weight else 'none'
if criterion == 'l1':
self.criterion = nn.L1Loss(reduction=reduction)
elif criterion == 'l2' or criterion == 'mse':
self.criterion = nn.MSELoss(reduction=reduction)
elif criterion == 'info_nce':
self.criterion = InfoNCELoss(
temperature=info_nce_temperature,
gather_distributed=info_nce_gather_distributed,
learn_temperature=info_nce_learn_temperature,
flatten=info_nce_flatten,
single_direction=True
)
else:
raise ValueError('Criterion %s is not recognized' % criterion)
self.resize = resize
self.resize_mode = resize_mode
print('Perceptual loss:')
print('\tMode: {}'.format(network))
def forward(self, inp, target, per_sample_weights=None):
r"""Perceptual loss forward.
Args:
inp (4D tensor) : Input tensor.
target (4D tensor) : Ground truth tensor, same shape as the input.
per_sample_weight (bool): Output loss for individual samples in the
batch instead of mean loss.
Returns:
(scalar tensor) : The perceptual loss.
"""
if not torch.is_autocast_enabled():
inp, target = to_float([inp, target])
# Perceptual loss should operate in eval mode by default.
self.model.eval()
inp, target = apply_imagenet_normalization(inp), apply_imagenet_normalization(target)
if self.resize:
inp = F.interpolate(inp, mode=self.resize_mode, size=(224, 224), align_corners=False)
target = F.interpolate(target, mode=self.resize_mode, size=(224, 224), align_corners=False)
# Evaluate perceptual loss at each scale.
loss = 0
for scale in range(self.num_scales):
input_features, target_features = self.model(inp), self.model(target)
for layer, weight in zip(self.layers, self.weights):
# Example per-layer VGG19 loss values after applying
# [0.03125, 0.0625, 0.125, 0.25, 1.0] weighting.
# relu_1_1, 0.014698
# relu_2_1, 0.085817
# relu_3_1, 0.349977
# relu_4_1, 0.544188
# relu_5_1, 0.906261
# print('%s, %f' % (
# layer,
# weight * self.criterion(
# input_features[layer],
# target_features[
# layer].detach()).item()))
l_tmp = self.criterion(input_features[layer], target_features[layer].detach())
if per_sample_weights is not None:
l_tmp = l_tmp.mean(1).mean(1).mean(1)
loss += weight * l_tmp
# Downsample the input and target.
if scale != self.num_scales - 1:
inp = F.interpolate(
inp, mode=self.resize_mode, scale_factor=0.5,
align_corners=False, recompute_scale_factor=True)
target = F.interpolate(
target, mode=self.resize_mode, scale_factor=0.5,
align_corners=False, recompute_scale_factor=True)
return loss.float()
class _PerceptualNetwork(nn.Module):
r"""The network that extracts features to compute the perceptual loss.
Args:
network (nn.Sequential) : The network that extracts features.
layer_name_mapping (dict) : The dictionary that
maps a layer's index to its name.
layers (list of str): The list of layer names that we are using.
"""
def __init__(self, network, layer_name_mapping, layers):
super().__init__()
assert isinstance(network, nn.Sequential), \
'The network needs to be of type "nn.Sequential".'
self.network = network
self.layer_name_mapping = layer_name_mapping
self.layers = layers
for param in self.parameters():
param.requires_grad = False
def forward(self, x):
r"""Extract perceptual features."""
output = {}
for i, layer in enumerate(self.network):
x = layer(x)
layer_name = self.layer_name_mapping.get(i, None)
if layer_name in self.layers:
# If the current layer is used by the perceptual loss.
output[layer_name] = x
return output
def _vgg19(layers):
r"""Get vgg19 layers"""
vgg = torchvision.models.vgg19(pretrained=True)
# network = vgg.features
network = torch.nn.Sequential(*(list(vgg.features) + [vgg.avgpool] + [nn.Flatten()] + list(vgg.classifier)))
layer_name_mapping = {1: 'relu_1_1',
3: 'relu_1_2',
6: 'relu_2_1',
8: 'relu_2_2',
11: 'relu_3_1',
13: 'relu_3_2',
15: 'relu_3_3',
17: 'relu_3_4',
20: 'relu_4_1',
22: 'relu_4_2',
24: 'relu_4_3',
26: 'relu_4_4',
29: 'relu_5_1',
31: 'relu_5_2',
33: 'relu_5_3',
35: 'relu_5_4',
36: 'pool_5',
42: 'fc_2'}
return _PerceptualNetwork(network, layer_name_mapping, layers)
def _vgg16(layers):
r"""Get vgg16 layers"""
network = torchvision.models.vgg16(pretrained=True).features
layer_name_mapping = {1: 'relu_1_1',
3: 'relu_1_2',
6: 'relu_2_1',
8: 'relu_2_2',
11: 'relu_3_1',
13: 'relu_3_2',
15: 'relu_3_3',
18: 'relu_4_1',
20: 'relu_4_2',
22: 'relu_4_3',
25: 'relu_5_1'}
return _PerceptualNetwork(network, layer_name_mapping, layers)
def _alexnet(layers):
r"""Get alexnet layers"""
network = torchvision.models.alexnet(pretrained=True).features
layer_name_mapping = {0: 'conv_1',
1: 'relu_1',
3: 'conv_2',
4: 'relu_2',
6: 'conv_3',
7: 'relu_3',
8: 'conv_4',
9: 'relu_4',
10: 'conv_5',
11: 'relu_5'}
return _PerceptualNetwork(network, layer_name_mapping, layers)
def _inception_v3(layers):
r"""Get inception v3 layers"""
inception = torchvision.models.inception_v3(pretrained=True)
network = nn.Sequential(inception.Conv2d_1a_3x3,
inception.Conv2d_2a_3x3,
inception.Conv2d_2b_3x3,
nn.MaxPool2d(kernel_size=3, stride=2),
inception.Conv2d_3b_1x1,
inception.Conv2d_4a_3x3,
nn.MaxPool2d(kernel_size=3, stride=2),
inception.Mixed_5b,
inception.Mixed_5c,
inception.Mixed_5d,
inception.Mixed_6a,
inception.Mixed_6b,
inception.Mixed_6c,
inception.Mixed_6d,
inception.Mixed_6e,
inception.Mixed_7a,
inception.Mixed_7b,
inception.Mixed_7c,
nn.AdaptiveAvgPool2d(output_size=(1, 1)))
layer_name_mapping = {3: 'pool_1',
6: 'pool_2',
14: 'mixed_6e',
18: 'pool_3'}
return _PerceptualNetwork(network, layer_name_mapping, layers)
def _resnet50(layers):
r"""Get resnet50 layers"""
resnet50 = torchvision.models.resnet50(pretrained=True)
network = nn.Sequential(resnet50.conv1,
resnet50.bn1,
resnet50.relu,
resnet50.maxpool,
resnet50.layer1,
resnet50.layer2,
resnet50.layer3,
resnet50.layer4,
resnet50.avgpool)
layer_name_mapping = {4: 'layer_1',
5: 'layer_2',
6: 'layer_3',
7: 'layer_4'}
return _PerceptualNetwork(network, layer_name_mapping, layers)
def _robust_resnet50(layers):
r"""Get robust resnet50 layers"""
resnet50 = torchvision.models.resnet50(pretrained=False)
state_dict = torch.utils.model_zoo.load_url(
'http://andrewilyas.com/ImageNet.pt')
new_state_dict = {}
for k, v in state_dict['model'].items():
if k.startswith('module.model.'):
new_state_dict[k[13:]] = v
resnet50.load_state_dict(new_state_dict)
network = nn.Sequential(resnet50.conv1,
resnet50.bn1,
resnet50.relu,
resnet50.maxpool,
resnet50.layer1,
resnet50.layer2,
resnet50.layer3,
resnet50.layer4,
resnet50.avgpool)
layer_name_mapping = {4: 'layer_1',
5: 'layer_2',
6: 'layer_3',
7: 'layer_4'}
return _PerceptualNetwork(network, layer_name_mapping, layers)
def _vgg_face_dag(layers):
network = torchvision.models.vgg16(num_classes=2622)
state_dict = torch.utils.model_zoo.load_url(
'http://www.robots.ox.ac.uk/~albanie/models/pytorch-mcn/'
'vgg_face_dag.pth')
feature_layer_name_mapping = {
0: 'conv1_1',
2: 'conv1_2',
5: 'conv2_1',
7: 'conv2_2',
10: 'conv3_1',
12: 'conv3_2',
14: 'conv3_3',
17: 'conv4_1',
19: 'conv4_2',
21: 'conv4_3',
24: 'conv5_1',
26: 'conv5_2',
28: 'conv5_3'}
new_state_dict = {}
for k, v in feature_layer_name_mapping.items():
new_state_dict['features.' + str(k) + '.weight'] = \
state_dict[v + '.weight']
new_state_dict['features.' + str(k) + '.bias'] = \
state_dict[v + '.bias']
classifier_layer_name_mapping = {
0: 'fc6',
3: 'fc7',
6: 'fc8'}
for k, v in classifier_layer_name_mapping.items():
new_state_dict['classifier.' + str(k) + '.weight'] = \
state_dict[v + '.weight']
new_state_dict['classifier.' + str(k) + '.bias'] = \
state_dict[v + '.bias']
network.load_state_dict(new_state_dict)
class Flatten(nn.Module):
def forward(self, x):
return x.view(x.shape[0], -1)
layer_name_mapping = {
0: 'conv_1_1',
1: 'relu_1_1',
2: 'conv_1_2',
5: 'conv_2_1', # 1/2
6: 'relu_2_1',
7: 'conv_2_2',
10: 'conv_3_1', # 1/4
11: 'relu_3_1',
12: 'conv_3_2',
14: 'conv_3_3',
17: 'conv_4_1', # 1/8
18: 'relu_4_1',
19: 'conv_4_2',
21: 'conv_4_3',
24: 'conv_5_1', # 1/16
25: 'relu_5_1',
26: 'conv_5_2',
28: 'conv_5_3',
33: 'fc6',
36: 'fc7',
39: 'fc8'
}
seq_layers = []
for feature in network.features:
seq_layers += [feature]
seq_layers += [network.avgpool, Flatten()]
for classifier in network.classifier:
seq_layers += [classifier]
network = nn.Sequential(*seq_layers)
return _PerceptualNetwork(network, layer_name_mapping, layers)
|