File size: 5,794 Bytes
f670afc
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
# Copyright (C) 2021 NVIDIA CORPORATION & AFFILIATES.  All rights reserved.
#
# This work is made available under the Nvidia Source Code License-NC.
# To view a copy of this license, check out LICENSE.md
import numpy as np
import matplotlib.pyplot as plt
import os.path

TAG_CHAR = np.array([202021.25], np.float32)


def readFlow(fn):
    """ Read .flo file in Middlebury format"""
    # Code adapted from:
    # http://stackoverflow.com/questions/28013200/
    # reading-middlebury-flow-files-with-python-bytes-array-numpy

    # WARNING: this will work on little-endian architectures
    # (eg Intel x86) only!
    # print 'fn = %s'%(fn)
    with open(fn, 'rb') as f:
        magic = np.fromfile(f, np.float32, count=1)
        if 202021.25 != magic:
            print('Magic number incorrect. Invalid .flo file')
            return None
        else:
            w = np.fromfile(f, np.int32, count=1)
            h = np.fromfile(f, np.int32, count=1)
            # print 'Reading %d x %d flo file\n' % (w, h)
            data = np.fromfile(f, np.float32, count=2 * int(w) * int(h))
            # Reshape data into 3D array (columns, rows, bands)
            # The reshape here is for visualization, the original code is
            # (w,h,2)
            return np.resize(data, (int(h), int(w), 2))


def writeFlow(filename, uv, v=None):
    """ Write optical flow to file.

    If v is None, uv is assumed to contain both u and v channels,
    stacked in deep.
    Original code by Deqing Sun, adapted from Daniel Scharstein.
    """
    nBands = 2

    if v is None:
        assert(uv.ndim == 3)
        assert(uv.shape[2] == 2)
        u = uv[:, :, 0]
        v = uv[:, :, 1]
    else:
        u = uv

    assert(u.shape == v.shape)
    height, width = u.shape
    f = open(filename, 'wb')
    # write the header
    f.write(TAG_CHAR)
    np.array(width).astype(np.int32).tofile(f)
    np.array(height).astype(np.int32).tofile(f)
    # arrange into matrix form
    tmp = np.zeros((height, width * nBands))
    tmp[:, np.arange(width) * 2] = u
    tmp[:, np.arange(width) * 2 + 1] = v
    tmp.astype(np.float32).tofile(f)
    f.close()


# ref: https://github.com/sampepose/flownet2-tf/
# blob/18f87081db44939414fc4a48834f9e0da3e69f4c/src/flowlib.py#L240
def visulize_flow_file(flow_filename, save_dir=None):
    flow_data = readFlow(flow_filename)
    img = flow2img(flow_data)
    # plt.imshow(img)
    # plt.show()
    if save_dir:
        idx = flow_filename.rfind("/") + 1
        plt.imsave(os.path.join(save_dir, "%s-vis.png" %
                                flow_filename[idx:-4]), img)


def flow2img(flow_data):
    """
    convert optical flow into color image
    :param flow_data:
    :return: color image
    """
    # print(flow_data.shape)
    # print(type(flow_data))
    u = flow_data[:, :, 0]
    v = flow_data[:, :, 1]

    UNKNOW_FLOW_THRESHOLD = 1e7
    pr1 = abs(u) > UNKNOW_FLOW_THRESHOLD
    pr2 = abs(v) > UNKNOW_FLOW_THRESHOLD
    idx_unknown = (pr1 | pr2)
    u[idx_unknown] = v[idx_unknown] = 0

    # get max value in each direction
    maxu = -999.
    maxv = -999.
    minu = 999.
    minv = 999.
    maxu = max(maxu, np.max(u))
    maxv = max(maxv, np.max(v))
    minu = min(minu, np.min(u))
    minv = min(minv, np.min(v))

    rad = np.sqrt(u ** 2 + v ** 2)
    maxrad = max(-1, np.max(rad))
    u = u / maxrad + np.finfo(float).eps
    v = v / maxrad + np.finfo(float).eps

    img = compute_color(u, v)

    idx = np.repeat(idx_unknown[:, :, np.newaxis], 3, axis=2)
    img[idx] = 0

    return np.uint8(img)


def compute_color(u, v):
    """
    compute optical flow color map
    :param u: horizontal optical flow
    :param v: vertical optical flow
    :return:
    """

    height, width = u.shape
    img = np.zeros((height, width, 3))

    NAN_idx = np.isnan(u) | np.isnan(v)
    u[NAN_idx] = v[NAN_idx] = 0

    colorwheel = make_color_wheel()
    ncols = np.size(colorwheel, 0)

    rad = np.sqrt(u ** 2 + v ** 2)

    a = np.arctan2(-v, -u) / np.pi

    fk = (a + 1) / 2 * (ncols - 1) + 1

    k0 = np.floor(fk).astype(int)

    k1 = k0 + 1
    k1[k1 == ncols + 1] = 1
    f = fk - k0

    for i in range(0, np.size(colorwheel, 1)):
        tmp = colorwheel[:, i]
        col0 = tmp[k0 - 1] / 255
        col1 = tmp[k1 - 1] / 255
        col = (1 - f) * col0 + f * col1

        idx = rad <= 1
        col[idx] = 1 - rad[idx] * (1 - col[idx])
        notidx = np.logical_not(idx)

        col[notidx] *= 0.75
        img[:, :, i] = np.uint8(np.floor(255 * col * (1 - NAN_idx)))

    return img


def make_color_wheel():
    """
    Generate color wheel according Middlebury color code
    :return: Color wheel
    """
    RY = 15
    YG = 6
    GC = 4
    CB = 11
    BM = 13
    MR = 6

    ncols = RY + YG + GC + CB + BM + MR

    colorwheel = np.zeros([ncols, 3])

    col = 0

    # RY
    colorwheel[0:RY, 0] = 255
    colorwheel[0:RY, 1] = np.transpose(np.floor(255 * np.arange(0, RY) / RY))
    col += RY

    # YG
    colorwheel[col:col + YG, 0] = 255 - \
        np.transpose(np.floor(255 * np.arange(0, YG) / YG))
    colorwheel[col:col + YG, 1] = 255
    col += YG

    # GC
    colorwheel[col:col + GC, 1] = 255
    colorwheel[col:col + GC,
               2] = np.transpose(np.floor(255 * np.arange(0, GC) / GC))
    col += GC

    # CB
    colorwheel[col:col + CB, 1] = 255 - \
        np.transpose(np.floor(255 * np.arange(0, CB) / CB))
    colorwheel[col:col + CB, 2] = 255
    col += CB

    # BM
    colorwheel[col:col + BM, 2] = 255
    colorwheel[col:col + BM,
               0] = np.transpose(np.floor(255 * np.arange(0, BM) / BM))
    col += + BM

    # MR
    colorwheel[col:col + MR, 2] = 255 - \
        np.transpose(np.floor(255 * np.arange(0, MR) / MR))
    colorwheel[col:col + MR, 0] = 255

    return colorwheel