# Copyright (C) 2021 NVIDIA CORPORATION & AFFILIATES. All rights reserved. # # This work is made available under the Nvidia Source Code License-NC. # To view a copy of this license, check out LICENSE.md import numpy as np import matplotlib.pyplot as plt import os.path TAG_CHAR = np.array([202021.25], np.float32) def readFlow(fn): """ Read .flo file in Middlebury format""" # Code adapted from: # http://stackoverflow.com/questions/28013200/ # reading-middlebury-flow-files-with-python-bytes-array-numpy # WARNING: this will work on little-endian architectures # (eg Intel x86) only! # print 'fn = %s'%(fn) with open(fn, 'rb') as f: magic = np.fromfile(f, np.float32, count=1) if 202021.25 != magic: print('Magic number incorrect. Invalid .flo file') return None else: w = np.fromfile(f, np.int32, count=1) h = np.fromfile(f, np.int32, count=1) # print 'Reading %d x %d flo file\n' % (w, h) data = np.fromfile(f, np.float32, count=2 * int(w) * int(h)) # Reshape data into 3D array (columns, rows, bands) # The reshape here is for visualization, the original code is # (w,h,2) return np.resize(data, (int(h), int(w), 2)) def writeFlow(filename, uv, v=None): """ Write optical flow to file. If v is None, uv is assumed to contain both u and v channels, stacked in deep. Original code by Deqing Sun, adapted from Daniel Scharstein. """ nBands = 2 if v is None: assert(uv.ndim == 3) assert(uv.shape[2] == 2) u = uv[:, :, 0] v = uv[:, :, 1] else: u = uv assert(u.shape == v.shape) height, width = u.shape f = open(filename, 'wb') # write the header f.write(TAG_CHAR) np.array(width).astype(np.int32).tofile(f) np.array(height).astype(np.int32).tofile(f) # arrange into matrix form tmp = np.zeros((height, width * nBands)) tmp[:, np.arange(width) * 2] = u tmp[:, np.arange(width) * 2 + 1] = v tmp.astype(np.float32).tofile(f) f.close() # ref: https://github.com/sampepose/flownet2-tf/ # blob/18f87081db44939414fc4a48834f9e0da3e69f4c/src/flowlib.py#L240 def visulize_flow_file(flow_filename, save_dir=None): flow_data = readFlow(flow_filename) img = flow2img(flow_data) # plt.imshow(img) # plt.show() if save_dir: idx = flow_filename.rfind("/") + 1 plt.imsave(os.path.join(save_dir, "%s-vis.png" % flow_filename[idx:-4]), img) def flow2img(flow_data): """ convert optical flow into color image :param flow_data: :return: color image """ # print(flow_data.shape) # print(type(flow_data)) u = flow_data[:, :, 0] v = flow_data[:, :, 1] UNKNOW_FLOW_THRESHOLD = 1e7 pr1 = abs(u) > UNKNOW_FLOW_THRESHOLD pr2 = abs(v) > UNKNOW_FLOW_THRESHOLD idx_unknown = (pr1 | pr2) u[idx_unknown] = v[idx_unknown] = 0 # get max value in each direction maxu = -999. maxv = -999. minu = 999. minv = 999. maxu = max(maxu, np.max(u)) maxv = max(maxv, np.max(v)) minu = min(minu, np.min(u)) minv = min(minv, np.min(v)) rad = np.sqrt(u ** 2 + v ** 2) maxrad = max(-1, np.max(rad)) u = u / maxrad + np.finfo(float).eps v = v / maxrad + np.finfo(float).eps img = compute_color(u, v) idx = np.repeat(idx_unknown[:, :, np.newaxis], 3, axis=2) img[idx] = 0 return np.uint8(img) def compute_color(u, v): """ compute optical flow color map :param u: horizontal optical flow :param v: vertical optical flow :return: """ height, width = u.shape img = np.zeros((height, width, 3)) NAN_idx = np.isnan(u) | np.isnan(v) u[NAN_idx] = v[NAN_idx] = 0 colorwheel = make_color_wheel() ncols = np.size(colorwheel, 0) rad = np.sqrt(u ** 2 + v ** 2) a = np.arctan2(-v, -u) / np.pi fk = (a + 1) / 2 * (ncols - 1) + 1 k0 = np.floor(fk).astype(int) k1 = k0 + 1 k1[k1 == ncols + 1] = 1 f = fk - k0 for i in range(0, np.size(colorwheel, 1)): tmp = colorwheel[:, i] col0 = tmp[k0 - 1] / 255 col1 = tmp[k1 - 1] / 255 col = (1 - f) * col0 + f * col1 idx = rad <= 1 col[idx] = 1 - rad[idx] * (1 - col[idx]) notidx = np.logical_not(idx) col[notidx] *= 0.75 img[:, :, i] = np.uint8(np.floor(255 * col * (1 - NAN_idx))) return img def make_color_wheel(): """ Generate color wheel according Middlebury color code :return: Color wheel """ RY = 15 YG = 6 GC = 4 CB = 11 BM = 13 MR = 6 ncols = RY + YG + GC + CB + BM + MR colorwheel = np.zeros([ncols, 3]) col = 0 # RY colorwheel[0:RY, 0] = 255 colorwheel[0:RY, 1] = np.transpose(np.floor(255 * np.arange(0, RY) / RY)) col += RY # YG colorwheel[col:col + YG, 0] = 255 - \ np.transpose(np.floor(255 * np.arange(0, YG) / YG)) colorwheel[col:col + YG, 1] = 255 col += YG # GC colorwheel[col:col + GC, 1] = 255 colorwheel[col:col + GC, 2] = np.transpose(np.floor(255 * np.arange(0, GC) / GC)) col += GC # CB colorwheel[col:col + CB, 1] = 255 - \ np.transpose(np.floor(255 * np.arange(0, CB) / CB)) colorwheel[col:col + CB, 2] = 255 col += CB # BM colorwheel[col:col + BM, 2] = 255 colorwheel[col:col + BM, 0] = np.transpose(np.floor(255 * np.arange(0, BM) / BM)) col += + BM # MR colorwheel[col:col + MR, 2] = 255 - \ np.transpose(np.floor(255 * np.arange(0, MR) / MR)) colorwheel[col:col + MR, 0] = 255 return colorwheel