File size: 16,713 Bytes
9021458
7e486f9
9021458
7e486f9
9021458
 
5bfc72c
 
7e486f9
110ce02
5bfc72c
d289335
9021458
 
ee7f635
110ce02
94bf1e0
 
 
fcc0582
5bfc72c
7e486f9
5bfc72c
fcc0582
9021458
 
f749fc6
b852bf5
f749fc6
 
b852bf5
91a6397
f749fc6
fcc0582
46324f5
d5e6064
 
46324f5
d5e6064
46324f5
92de10e
 
 
 
 
 
 
 
 
1e4aac9
 
 
 
92de10e
 
 
 
 
 
 
 
46324f5
 
d5e6064
46324f5
fcc0582
9021458
 
 
 
fcc0582
 
 
9021458
fcc0582
d289335
9021458
 
 
 
 
 
 
 
 
94bf1e0
 
7e486f9
9021458
 
 
 
 
110ce02
ee7f635
7e486f9
 
 
fcc0582
7e486f9
110ce02
 
7e486f9
 
 
 
d5e6064
 
 
 
fcc0582
9021458
94bf1e0
 
9021458
 
 
 
 
94bf1e0
9021458
94bf1e0
9021458
 
94bf1e0
 
 
 
9021458
94bf1e0
9021458
94bf1e0
 
fcc0582
94bf1e0
 
 
 
 
 
9021458
94bf1e0
 
 
d5e6064
9021458
 
 
 
94bf1e0
 
 
 
9021458
94bf1e0
 
9021458
 
 
 
94bf1e0
 
8867999
 
9021458
8867999
d5e6064
5e34bda
8867999
9021458
5e34bda
 
94bf1e0
 
 
 
 
 
 
 
 
 
 
46324f5
 
9021458
46324f5
 
 
9021458
46324f5
94bf1e0
d5e6064
9021458
 
 
 
d5e6064
 
94bf1e0
d5e6064
 
 
 
9021458
d5e6064
 
 
 
 
 
 
 
 
 
 
 
 
 
94bf1e0
fcc0582
9021458
46324f5
ee7f635
 
94bf1e0
fcc0582
 
94bf1e0
fcc0582
 
9021458
ccf9ca7
 
 
 
 
 
 
 
 
fcc0582
 
9021458
d5e6064
 
 
fcc0582
 
 
ee7f635
 
 
 
d5e6064
 
 
ee7f635
 
 
 
 
fcc0582
9021458
94bf1e0
 
46324f5
fcc0582
94bf1e0
 
 
 
110ce02
9021458
 
 
 
110ce02
ee7f635
fcc0582
46324f5
 
7e486f9
 
 
 
 
d5e6064
7e486f9
 
d5e6064
110ce02
46324f5
d5e6064
46324f5
 
 
d5e6064
46324f5
 
d5e6064
46324f5
5bfc72c
9021458
 
fcc0582
7e486f9
fcc0582
 
d5e6064
 
 
 
94bf1e0
fcc0582
d5e6064
94bf1e0
fcc0582
 
 
 
46324f5
d5e6064
46324f5
d5e6064
46324f5
 
 
 
 
 
d5e6064
46324f5
5bfc72c
46324f5
fcc0582
 
 
9021458
fcc0582
92de10e
 
 
 
1e4aac9
fcc0582
 
110ce02
9021458
7e486f9
 
9021458
 
46324f5
5bfc72c
9021458
46324f5
 
110ce02
9021458
7e486f9
 
 
 
b845e1d
7e486f9
b845e1d
 
 
 
 
 
 
 
9021458
b845e1d
 
 
 
 
9021458
b845e1d
9021458
5bfc72c
9021458
 
46324f5
5bfc72c
46324f5
5bfc72c
 
 
46324f5
 
 
 
5bfc72c
46324f5
 
 
fcc0582
9021458
 
 
 
7e486f9
 
 
 
 
46324f5
110ce02
46324f5
f749fc6
b852bf5
 
 
 
ee7f635
fcc0582
46324f5
91a6397
922de3f
 
ee7f635
 
cbd3e48
ee7f635
922de3f
b852bf5
 
 
 
 
 
 
 
 
 
 
 
 
 
46324f5
 
91a6397
b852bf5
 
 
 
 
 
 
 
 
 
46324f5
 
91a6397
5e34bda
 
 
 
 
 
 
46324f5
fcc0582
 
 
ee7f635
fcc0582
 
 
 
 
 
 
 
 
46324f5
110ce02
46324f5
 
 
110ce02
 
 
 
46324f5
 
 
 
 
fcc0582
b852bf5
ee7f635
 
fcc0582
 
94bf1e0
110ce02
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
import os
import time
import spacy
import shutil
import pickle
import random
import logging
import asyncio
import warnings
import rapidjson

import gradio as gr
import networkx as nx

from llm_graph import LLMGraph, MODEL_LIST

from pyvis.network import Network
from spacy import displacy
from spacy.tokens import Span

logging.basicConfig(level=logging.INFO)
warnings.filterwarnings("ignore", category=UserWarning)

# Constants
TITLE = "🌐 Text2Graph: Extract Knowledge Graphs from Natural Language"
SUBTITLE = "✨ Extract and visualize knowledge graphs from texts in any language!"

# Basic CSS for styling
CUSTOM_CSS = """
.gradio-container {
    font-family: 'Segoe UI', Roboto, sans-serif;
}
"""

# Cache directory and file paths
CACHE_DIR = "./cache"
WORKING_DIR = "./sample"
EXAMPLE_CACHE_FILE = os.path.join(CACHE_DIR, "first_example_cache.pkl")
GRAPHML_FILE = WORKING_DIR + "/graph_chunk_entity_relation.graphml"

# Load the sample texts
text_en_file1 = "./data/sample1_en.txt"
with open(text_en_file1, 'r', encoding='utf-8') as file:
    text1_en = file.read()

text_en_file2 = "./data/sample2_en.txt"
with open(text_en_file2, 'r', encoding='utf-8') as file:
    text2_en = file.read()

text_en_file3 = "./data/sample3_en.txt"
with open(text_en_file3, 'r', encoding='utf-8') as file:
    text3_en = file.read()

text_fr_file = "./data/sample_fr.txt"
with open(text_fr_file, 'r', encoding='utf-8') as file:
    text_fr = file.read()

text_es_file = "./data/sample_es.txt"
with open(text_es_file, 'r', encoding='utf-8') as file:
    text_es = file.read()

# Create cache directory if it doesn't exist
os.makedirs(CACHE_DIR, exist_ok=True)
os.makedirs(WORKING_DIR, exist_ok=True)

def get_random_light_color():
    """
    Color utilities
    """

    r = random.randint(140, 255)
    g = random.randint(140, 255)
    b = random.randint(140, 255)

    return f"#{r:02x}{g:02x}{b:02x}"

def handle_text(text=""):
    """
    Text preprocessing
    """

    # Catch empty text
    if not text:
        return ""
    
    return " ".join(text.split())

def extract_kg(text="", model_name=MODEL_LIST[0], model=None):
    """
    Extract knowledge graph from text
    """

    # Catch empty text
    if not text or not model_name:
        raise gr.Error("⚠️ Both text and model must be provided!")
    if not model:
        raise gr.Error("⚠️ Model must be provided!")
    
    try:
        start_time = time.time()
        result = model.extract(text, model_name)

        end_time = time.time()
        duration = end_time - start_time
        logging.info(f"Response time: {duration:.4f} seconds")

        if isinstance(result, dict):
            return result
        else: # convert string to dict
            return rapidjson.loads(result)
    except Exception as e:
        raise gr.Error(f"❌ Extraction error: {str(e)}")

def find_token_indices(doc, substring, text):
    """
    Find token indices for a given substring in the text
    based on the provided spaCy doc.
    """

    result = []
    start_idx = text.find(substring)
    
    while start_idx != -1:
        end_idx = start_idx + len(substring)
        start_token = None
        end_token = None

        for token in doc:
            if token.idx == start_idx:
                start_token = token.i
            if token.idx + len(token) == end_idx:
                end_token = token.i + 1

        if start_token is not None and end_token is not None:
            result.append({
                "start": start_token,
                "end": end_token
            })
        
        # Search for next occurrence
        start_idx = text.find(substring, end_idx)

    return result

def create_custom_entity_viz(data, full_text, type_col="type"):
    """
    Create custom entity visualization using spaCy's displacy
    """

    nlp = spacy.blank("xx")
    doc = nlp(full_text)
    spans = []
    colors = {}

    for node in data["nodes"]:
        entity_spans = find_token_indices(doc, node["id"], full_text)

        for entity in entity_spans:
            start = entity["start"]
            end = entity["end"]
            
            if start < len(doc) and end <= len(doc):
                # Check for overlapping spans
                overlapping = any(s.start < end and start < s.end for s in spans)

                if not overlapping:                
                    node_type = node.get(type_col, "Entity")
                    span = Span(doc, start, end, label=node_type)
                    spans.append(span)

                    if node_type not in colors:
                        colors[node_type] = get_random_light_color()

    doc.set_ents(spans, default="unmodified")
    doc.spans["sc"] = spans
    options = {
        "colors": colors,
        "ents": list(colors.keys()),
        "style": "ent",
        "manual": True
    }

    html = displacy.render(doc, style="span", options=options)
    # Add custom styling to the entity visualization
    styled_html = f"""
    <div style="padding: 20px; border-radius: 12px; background-color: gray; box-shadow: 0 4px 6px -1px rgba(0, 0, 0, 0.1);">
        {html}
    </div>
    """

    return styled_html

def create_graph(json_data, model_name=MODEL_LIST[0]):
    """
    Create interactive knowledge graph using pyvis
    """

    if model_name == MODEL_LIST[0]:
        G = nx.Graph()

        # Add nodes with tooltips and error handling for missing keys
        for node in json_data['nodes']:
            # Get node type with fallback
            type = node.get("type", "Entity")

            # Get detailed type with fallback
            detailed_type = node.get("detailed_type", type)
            
            # Use node ID and type info for the tooltip
            G.add_node(node['id'], title=f"{type}: {detailed_type}")

        # Add edges with labels
        for edge in json_data['edges']:
            # Check if the required keys exist
            if 'from' in edge and 'to' in edge:
                label = edge.get('label', 'related')
                G.add_edge(edge['from'], edge['to'], title=label, label=label)
    else:
        G = nx.read_graphml(GRAPHML_FILE)

    # Create network visualization
    network = Network(
        width="100%",
        # height="700px",
        height="100vh",
        notebook=False,
        bgcolor="#f8fafc", 
        font_color="#1e293b"
    )
    
    # Configure network display
    network.from_nx(G)
    if model_name == MODEL_LIST[0]:
        network.barnes_hut(
            gravity=-3000,
            central_gravity=0.3,
            spring_length=50,
            spring_strength=0.001,
            damping=0.09,
            overlap=0,
        )

    # Customize node appearance
    for node in network.nodes:
        if "description" in node:
            node["title"] = node["description"]

        node['color'] = {'background': '#e0e7ff', 'border': '#6366f1', 'highlight': {'background': '#c7d2fe', 'border': '#4f46e5'}}
        node['font'] = {'size': 14, 'color': '#1e293b'}
        node['shape'] = 'dot'
        node['size'] = 20
    
    # Customize edge appearance
    for edge in network.edges:
        if "description" in edge:
            edge["title"] = edge["description"]

        edge['width'] = 4
        # edge['arrows'] = {'to': {'enabled': False, 'type': 'arrow'}}
        edge['color'] = {'color': '#6366f1', 'highlight': '#4f46e5'}
        edge['font'] = {'size': 12, 'color': '#4b5563', 'face': 'Arial'}
    
    # Generate HTML with iframe to isolate styles
    html = network.generate_html()
    html = html.replace("'", '"')

    return f"""<iframe style="width: 100%; height: 700px; margin: 0 auto; border-radius: 12px; box-shadow: 0 10px 15px -3px rgba(0, 0, 0, 0.1), 0 4px 6px -4px rgba(0, 0, 0, 0.1);" 
        name="result" allow="midi; geolocation; microphone; camera; display-capture; encrypted-media;" 
        sandbox="allow-modals allow-forms allow-scripts allow-same-origin allow-popups 
        allow-top-navigation-by-user-activation allow-downloads" allowfullscreen="" 
        allowpaymentrequest="" frameborder="0" srcdoc='{html}'></iframe>"""

def process_and_visualize(text, model_name, progress=gr.Progress()):
    """
    Process text and visualize knowledge graph and entities
    """

    if not text or not model_name:
        raise gr.Error("⚠️ Both text and model must be provided!")
    
    # Check if we're processing the first example for caching
    is_first_example = text == EXAMPLES[0][0]

    # Clear the working directory if it exists
    if os.path.exists(WORKING_DIR):
        shutil.rmtree(WORKING_DIR)
    os.makedirs(WORKING_DIR, exist_ok=True)
    
    # Initialize the LLMGraph model
    model = LLMGraph()
    asyncio.run(model.initialize_rag()) 

    # Try to load from cache if it's the first example
    if is_first_example and model_name == MODEL_LIST[0] and os.path.exists(EXAMPLE_CACHE_FILE):
        try:
            progress(0.3, desc="Loading from cache...")
            with open(EXAMPLE_CACHE_FILE, 'rb') as f:
                cached_data = pickle.load(f)
                
            progress(1.0, desc="Loaded from cache!")
            return cached_data["graph_html"], cached_data["entities_viz"], cached_data["json_data"], cached_data["stats"]
        except Exception as e:
            logging.error(f"Cache loading error: {str(e)}")

    # Continue with normal processing if cache fails
    progress(0, desc="Starting extraction...")
    json_data = extract_kg(text, model_name, model)
    
    progress(0.5, desc="Creating entity visualization...")
    if model_name == MODEL_LIST[0]:
        entities_viz = create_custom_entity_viz(json_data, text, type_col="type")
    else:
        entities_viz = create_custom_entity_viz(json_data, text, type_col="entity_type")
    
    progress(0.8, desc="Building knowledge graph...")
    graph_html = create_graph(json_data, model_name)
    
    node_count = len(json_data["nodes"])
    edge_count = len(json_data["edges"])
    stats = f"πŸ“Š Extracted {node_count} entities and {edge_count} relationships"
    
    # Save to cache if it's the first example
    if is_first_example and model_name == MODEL_LIST[0]:
        try:
            cached_data = {
                "graph_html": graph_html,
                "entities_viz": entities_viz,
                "json_data": json_data,
                "stats": stats
            }
            with open(EXAMPLE_CACHE_FILE, 'wb') as f:
                pickle.dump(cached_data, f)
        except Exception as e:
            logging.error(f"Cache saving error: {str(e)}")
    
    progress(1.0, desc="Complete!")
    return graph_html, entities_viz, json_data, stats

# Example texts
EXAMPLES = [
    [handle_text(text1_en)],
    [handle_text(text_fr)],
    [handle_text(text2_en)],
    [handle_text(text_es)],
    [handle_text(text3_en)]
]

def generate_first_example():
    """
    Generate cache for the first example if it doesn't exist when the app starts.

    """

    if not os.path.exists(EXAMPLE_CACHE_FILE):
        logging.info("Generating cache for first example...")

        try:
            text = EXAMPLES[0][0]
            model_name = MODEL_LIST[0] if MODEL_LIST else None

            # Initialize the LLMGraph model
            model = LLMGraph()
            asyncio.run(model.initialize_rag()) 

            # Extract data
            json_data = extract_kg(text, model_name, model)
            entities_viz = create_custom_entity_viz(json_data, text)
            graph_html = create_graph(json_data)
            
            node_count = len(json_data["nodes"])
            edge_count = len(json_data["edges"])
            stats = f"πŸ“Š Extracted {node_count} entities and {edge_count} relationships"
            
            # Save to cache
            cached_data = {
                "graph_html": graph_html,
                "entities_viz": entities_viz,
                "json_data": json_data,
                "stats": stats
            }

            with open(EXAMPLE_CACHE_FILE, 'wb') as f:
                pickle.dump(cached_data, f)
            logging.info("First example cache generated successfully")

            return cached_data
        except Exception as e:
            logging.error(f"Error generating first example cache: {str(e)}")
    else:
        logging.info("First example cache already exists")

        # Load existing cache
        try:
            with open(EXAMPLE_CACHE_FILE, 'rb') as f:
                return pickle.load(f)
        except Exception as e:
            logging.error(f"Error loading existing cache: {str(e)}")
    
    return None

def create_ui():
    """
    Create the Gradio UI
    """

    # Clear the working directory if it exists
    if os.path.exists(WORKING_DIR):
        shutil.rmtree(WORKING_DIR)
    os.makedirs(WORKING_DIR, exist_ok=True)
    
    # Try to generate/load the first example cache
    first_example = generate_first_example()
    
    with gr.Blocks(css=CUSTOM_CSS, title=TITLE) as demo:
        # Header 
        gr.Markdown(f"# {TITLE}")
        gr.Markdown(f"{SUBTITLE}")
        
        # Main content area
        with gr.Row():
            # Left panel - Input controls
            with gr.Column(scale=1):
                input_model = gr.Radio(
                    MODEL_LIST,
                    label="πŸ€– Select Model",
                    info="Choose a model to process your text",
                    value=MODEL_LIST[0] if MODEL_LIST else None,
                )

                input_text = gr.TextArea(
                    label="πŸ“ Input Text", 
                    info="Enter text in any language to extract a knowledge graph",
                    placeholder="Enter text here...",
                    lines=8,
                    value=EXAMPLES[0][0]  # Pre-fill with first example
                )
                
                with gr.Row():
                    submit_button = gr.Button("πŸš€ Extract & Visualize", variant="primary", scale=2)
                    clear_button = gr.Button("πŸ”„ Clear", variant="secondary", scale=1)
                
                # Statistics will appear here
                stats_output = gr.Markdown("", label="πŸ” Analysis Results")
            
            # Right panel - Examples moved to right side
            with gr.Column(scale=1):
                gr.Markdown("## πŸ“š Example Texts")
                gr.Examples(
                    examples=EXAMPLES,
                    inputs=input_text,
                    label=""
                )
                
                # JSON output moved to right side as well
                with gr.Accordion("πŸ“Š JSON Data", open=False):
                    output_json = gr.JSON(label="")
        
        # Full width visualization area at the bottom
        with gr.Row():
            # Full width visualization area
            with gr.Tabs():
                with gr.TabItem("🧩 Knowledge Graph"):
                    output_graph = gr.HTML(label="")
                
                with gr.TabItem("🏷️ Entity Recognition"):
                    output_entity_viz = gr.HTML(label="")
        
        # Functionality
        submit_button.click(
            fn=process_and_visualize, 
            inputs=[input_text, input_model],
            outputs=[output_graph, output_entity_viz, output_json, stats_output]
        )
        
        clear_button.click(
            fn=lambda: [None, None, None, ""],
            inputs=[],
            outputs=[output_graph, output_entity_viz, output_json, stats_output]
        )
        
        # Set initial values from cache if available
        if first_example:
            # Use this to set initial values when the app loads
            demo.load(
                lambda: [
                    first_example["graph_html"], 
                    first_example["entities_viz"], 
                    first_example["json_data"], 
                    first_example["stats"]
                ],
                inputs=None,
                outputs=[output_graph, output_entity_viz, output_json, stats_output]
            )
        
        # Footer
        gr.Markdown("---")
        gr.Markdown("πŸ“‹ **Instructions:** Enter text in any language, select a model and click `Extract & Visualize` to generate a knowledge graph.")
        gr.Markdown("πŸ› οΈ Powered by [GPT-4.1-mini](https://platform.openai.com/docs/models/gpt-4.1-mini) and [Phi-3-mini-128k-instruct-graph](https://huggingface.co/EmergentMethods/Phi-3-mini-128k-instruct-graph)")
        
    return demo

def main():
    """
    Main function to run the Gradio app
    """

    demo = create_ui()
    demo.launch(share=False)
    
if __name__ == "__main__":
    main()