File size: 6,581 Bytes
b6cf9eb
d5e6064
1e4aac9
5bfc72c
d5e6064
b845e1d
5bfc72c
b6cf9eb
5bfc72c
 
 
 
 
 
b6cf9eb
1be4321
5bfc72c
 
34a29fb
 
b6cf9eb
5bfc72c
 
 
 
 
 
 
 
d5e6064
 
b6cf9eb
ee7f635
 
110ce02
ee7f635
 
1e4aac9
 
 
 
 
ee7f635
5bfc72c
 
 
 
110ce02
5bfc72c
 
 
 
7e486f9
 
 
 
 
 
 
 
 
 
ccf9ca7
d5e6064
 
5bfc72c
110ce02
 
 
 
5bfc72c
110ce02
 
 
 
 
 
5bfc72c
110ce02
5bfc72c
110ce02
9021458
 
 
5bfc72c
110ce02
 
34a29fb
 
110ce02
b6cf9eb
110ce02
 
b6cf9eb
9021458
 
 
 
b845e1d
5bfc72c
b845e1d
 
 
b6cf9eb
b845e1d
 
 
b6cf9eb
 
9021458
 
 
 
1e4aac9
b6cf9eb
35e452a
 
 
 
 
 
9021458
 
 
 
 
 
 
 
 
 
 
 
b6cf9eb
d5e6064
9021458
d5e6064
9021458
5bfc72c
110ce02
5bfc72c
 
d5e6064
 
 
110ce02
 
 
1e4aac9
d5e6064
 
1e4aac9
 
d5e6064
 
5bfc72c
d5e6064
 
 
 
5bfc72c
 
 
 
 
110ce02
 
 
 
 
5bfc72c
110ce02
5bfc72c
 
 
 
 
 
110ce02
5bfc72c
 
 
 
 
 
 
 
 
 
 
 
 
 
110ce02
 
 
 
 
 
 
5bfc72c
 
 
110ce02
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
import os
import time

import numpy as np
import networkx as nx

from textwrap import dedent
from dotenv import load_dotenv
from openai import AzureOpenAI
from huggingface_hub import InferenceClient

from lightrag import LightRAG
from lightrag.utils import EmbeddingFunc
from lightrag.kg.shared_storage import initialize_pipeline_status

load_dotenv()

# Load the environment variables
HF_API_TOKEN = os.environ["HF_TOKEN"]
HF_API_ENDPOINT = os.environ["HF_API_ENDPOINT"]

AZURE_OPENAI_API_VERSION = os.environ["AZURE_OPENAI_API_VERSION"]
AZURE_OPENAI_DEPLOYMENT = os.environ["AZURE_OPENAI_DEPLOYMENT"]
AZURE_OPENAI_API_KEY = os.environ["AZURE_OPENAI_API_KEY"]
AZURE_OPENAI_ENDPOINT = os.environ["AZURE_OPENAI_ENDPOINT"]

AZURE_EMBEDDING_DEPLOYMENT = os.environ["AZURE_EMBEDDING_DEPLOYMENT"]
AZURE_EMBEDDING_API_VERSION = os.environ["AZURE_EMBEDDING_API_VERSION"]

WORKING_DIR = "./sample"
GRAPHML_FILE = WORKING_DIR + "/graph_chunk_entity_relation.graphml"

MODEL_LIST = [
  "EmergentMethods/Phi-3-mini-128k-instruct-graph",
  "OpenAI/GPT-4.1-mini",
]

# Read the system prompt
sys_prompt_file = "./data/sys_prompt.txt"
with open(sys_prompt_file, 'r', encoding='utf-8') as file:
    sys_prompt = file.read()

class LLMGraph:
    """
    A class to interact with LLMs for knowledge graph extraction.
    """

    async def initialize_rag(self, embedding_dimension=3072):
        """
        Initialize the LightRAG instance with the specified embedding dimension.
        """

        if self.rag is None:
            self.rag = LightRAG(
                working_dir=WORKING_DIR,
                llm_model_func=self._llm_model_func,
                embedding_func=EmbeddingFunc(
                    embedding_dim=embedding_dimension,
                    max_token_size=8192,
                    func=self._embedding_func,
                ),
            )

        await self.rag.initialize_storages()
        await initialize_pipeline_status()

    # async def test_responses(self):
    #     """
    #     Test the LLM and embedding functions.
    #     """

    #     result = await self._llm_model_func("How are you?")
    #     print("Response from llm_model_func: ", result)

    #     result = await self._embedding_func(["How are you?"])
    #     print("Result of embedding_func: ", result.shape)
    #     print("Dimension of embedding: ", result.shape[1])

    #     return True

    def __init__(self):
        """
        Initialize the Phi3InstructGraph with a specified model.
        """

        # Hugging Face Inference API for Phi-3-mini-128k-instruct-graph
        self.hf_client = InferenceClient(
            model=HF_API_ENDPOINT,
            token=HF_API_TOKEN
        )

        self.rag = None # Lazy loading of RAG instance
        
    def _generate(self, messages):
        """
        Generate a response from the model based on the provided messages.
        """

        # Use the chat_completion method
        response = self.hf_client.chat_completion(
            messages=messages,
            max_tokens=1024,
        )

        # Access the generated text
        generated_text = response.choices[0].message.content
        return generated_text

    def _get_messages(self, text):
        """
        Construct the message list for the chat model.
        """
        
        context = dedent(sys_prompt)

        user_message = dedent(f"""\n
                    -------Text begin-------
                    {text}
                    -------Text end-------
                    """)
        
        messages = [ 
            {
                "role": "system", 
                "content": context
            }, 
            {
                "role": "user", 
                "content": user_message
            }
        ]

        return messages
    
    def extract(self, text, model_name=MODEL_LIST[0]):
        """
        Extract knowledge graph in structured format from text.
        """
        
        if model_name == MODEL_LIST[0]:
            # Use Hugging Face Inference API with Phi-3-mini-128k-instruct-graph
            messages = self._get_messages(text)

            json_graph = self._generate(messages)
            return json_graph
        else:
            # Use LightRAG with Azure OpenAI
            self.rag.insert(text) # Insert the text into the RAG storage
            
            # Wait for GRAPHML_FILE to be created
            while not os.path.exists(GRAPHML_FILE):
                time.sleep(0.1) # Sleep for 0.1 seconds before checking again

            # Extract dict format of the knowledge graph
            G = nx.read_graphml(GRAPHML_FILE)

            # Convert the graph to node-link data format
            dict_graph = nx.node_link_data(G, edges="edges")
            return dict_graph
        
    async def _llm_model_func(self, prompt, system_prompt=None, history_messages=[], **kwargs) -> str:
        """
        Call the Azure OpenAI chat completion endpoint with the given prompt and optional system prompt and history messages.
        """

        llm_client = AzureOpenAI(
            api_key=AZURE_OPENAI_API_KEY,
            api_version=AZURE_OPENAI_API_VERSION,
            azure_endpoint=AZURE_OPENAI_ENDPOINT,
        )

        messages = []
        if system_prompt:
            messages.append({"role": "system", "content": system_prompt})
        if history_messages:
            messages.extend(history_messages)
        messages.append({"role": "user", "content": prompt})

        chat_completion = llm_client.chat.completions.create(
            model=AZURE_OPENAI_DEPLOYMENT,
            messages=messages,
            temperature=kwargs.get("temperature", 0),
            top_p=kwargs.get("top_p", 1),
            n=kwargs.get("n", 1),
        )

        return chat_completion.choices[0].message.content

    async def _embedding_func(self, texts: list[str]) -> np.ndarray:
        """
        Call the Azure OpenAI embeddings endpoint with the given texts.
        """

        emb_client = AzureOpenAI(
            api_key=AZURE_OPENAI_API_KEY,
            api_version=AZURE_EMBEDDING_API_VERSION,
            azure_endpoint=AZURE_OPENAI_ENDPOINT,
        )

        embedding = emb_client.embeddings.create(model=AZURE_EMBEDDING_DEPLOYMENT, input=texts)
        embeddings = [item.embedding for item in embedding.data]

        return np.array(embeddings)

# if __name__ == "__main__":
#     # Initialize the LLMGraph model
#     model = LLMGraph()
#     asyncio.run(model.initialize_rag())  # Ensure RAG is initialized
#     print("LLMGraph model initialized.")