Spaces:
Running
on
Zero
Running
on
Zero
File size: 6,581 Bytes
b6cf9eb d5e6064 1e4aac9 5bfc72c d5e6064 b845e1d 5bfc72c b6cf9eb 5bfc72c b6cf9eb 1be4321 5bfc72c 34a29fb b6cf9eb 5bfc72c d5e6064 b6cf9eb ee7f635 110ce02 ee7f635 1e4aac9 ee7f635 5bfc72c 110ce02 5bfc72c 7e486f9 ccf9ca7 d5e6064 5bfc72c 110ce02 5bfc72c 110ce02 5bfc72c 110ce02 5bfc72c 110ce02 9021458 5bfc72c 110ce02 34a29fb 110ce02 b6cf9eb 110ce02 b6cf9eb 9021458 b845e1d 5bfc72c b845e1d b6cf9eb b845e1d b6cf9eb 9021458 1e4aac9 b6cf9eb 35e452a 9021458 b6cf9eb d5e6064 9021458 d5e6064 9021458 5bfc72c 110ce02 5bfc72c d5e6064 110ce02 1e4aac9 d5e6064 1e4aac9 d5e6064 5bfc72c d5e6064 5bfc72c 110ce02 5bfc72c 110ce02 5bfc72c 110ce02 5bfc72c 110ce02 5bfc72c 110ce02 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 |
import os
import time
import numpy as np
import networkx as nx
from textwrap import dedent
from dotenv import load_dotenv
from openai import AzureOpenAI
from huggingface_hub import InferenceClient
from lightrag import LightRAG
from lightrag.utils import EmbeddingFunc
from lightrag.kg.shared_storage import initialize_pipeline_status
load_dotenv()
# Load the environment variables
HF_API_TOKEN = os.environ["HF_TOKEN"]
HF_API_ENDPOINT = os.environ["HF_API_ENDPOINT"]
AZURE_OPENAI_API_VERSION = os.environ["AZURE_OPENAI_API_VERSION"]
AZURE_OPENAI_DEPLOYMENT = os.environ["AZURE_OPENAI_DEPLOYMENT"]
AZURE_OPENAI_API_KEY = os.environ["AZURE_OPENAI_API_KEY"]
AZURE_OPENAI_ENDPOINT = os.environ["AZURE_OPENAI_ENDPOINT"]
AZURE_EMBEDDING_DEPLOYMENT = os.environ["AZURE_EMBEDDING_DEPLOYMENT"]
AZURE_EMBEDDING_API_VERSION = os.environ["AZURE_EMBEDDING_API_VERSION"]
WORKING_DIR = "./sample"
GRAPHML_FILE = WORKING_DIR + "/graph_chunk_entity_relation.graphml"
MODEL_LIST = [
"EmergentMethods/Phi-3-mini-128k-instruct-graph",
"OpenAI/GPT-4.1-mini",
]
# Read the system prompt
sys_prompt_file = "./data/sys_prompt.txt"
with open(sys_prompt_file, 'r', encoding='utf-8') as file:
sys_prompt = file.read()
class LLMGraph:
"""
A class to interact with LLMs for knowledge graph extraction.
"""
async def initialize_rag(self, embedding_dimension=3072):
"""
Initialize the LightRAG instance with the specified embedding dimension.
"""
if self.rag is None:
self.rag = LightRAG(
working_dir=WORKING_DIR,
llm_model_func=self._llm_model_func,
embedding_func=EmbeddingFunc(
embedding_dim=embedding_dimension,
max_token_size=8192,
func=self._embedding_func,
),
)
await self.rag.initialize_storages()
await initialize_pipeline_status()
# async def test_responses(self):
# """
# Test the LLM and embedding functions.
# """
# result = await self._llm_model_func("How are you?")
# print("Response from llm_model_func: ", result)
# result = await self._embedding_func(["How are you?"])
# print("Result of embedding_func: ", result.shape)
# print("Dimension of embedding: ", result.shape[1])
# return True
def __init__(self):
"""
Initialize the Phi3InstructGraph with a specified model.
"""
# Hugging Face Inference API for Phi-3-mini-128k-instruct-graph
self.hf_client = InferenceClient(
model=HF_API_ENDPOINT,
token=HF_API_TOKEN
)
self.rag = None # Lazy loading of RAG instance
def _generate(self, messages):
"""
Generate a response from the model based on the provided messages.
"""
# Use the chat_completion method
response = self.hf_client.chat_completion(
messages=messages,
max_tokens=1024,
)
# Access the generated text
generated_text = response.choices[0].message.content
return generated_text
def _get_messages(self, text):
"""
Construct the message list for the chat model.
"""
context = dedent(sys_prompt)
user_message = dedent(f"""\n
-------Text begin-------
{text}
-------Text end-------
""")
messages = [
{
"role": "system",
"content": context
},
{
"role": "user",
"content": user_message
}
]
return messages
def extract(self, text, model_name=MODEL_LIST[0]):
"""
Extract knowledge graph in structured format from text.
"""
if model_name == MODEL_LIST[0]:
# Use Hugging Face Inference API with Phi-3-mini-128k-instruct-graph
messages = self._get_messages(text)
json_graph = self._generate(messages)
return json_graph
else:
# Use LightRAG with Azure OpenAI
self.rag.insert(text) # Insert the text into the RAG storage
# Wait for GRAPHML_FILE to be created
while not os.path.exists(GRAPHML_FILE):
time.sleep(0.1) # Sleep for 0.1 seconds before checking again
# Extract dict format of the knowledge graph
G = nx.read_graphml(GRAPHML_FILE)
# Convert the graph to node-link data format
dict_graph = nx.node_link_data(G, edges="edges")
return dict_graph
async def _llm_model_func(self, prompt, system_prompt=None, history_messages=[], **kwargs) -> str:
"""
Call the Azure OpenAI chat completion endpoint with the given prompt and optional system prompt and history messages.
"""
llm_client = AzureOpenAI(
api_key=AZURE_OPENAI_API_KEY,
api_version=AZURE_OPENAI_API_VERSION,
azure_endpoint=AZURE_OPENAI_ENDPOINT,
)
messages = []
if system_prompt:
messages.append({"role": "system", "content": system_prompt})
if history_messages:
messages.extend(history_messages)
messages.append({"role": "user", "content": prompt})
chat_completion = llm_client.chat.completions.create(
model=AZURE_OPENAI_DEPLOYMENT,
messages=messages,
temperature=kwargs.get("temperature", 0),
top_p=kwargs.get("top_p", 1),
n=kwargs.get("n", 1),
)
return chat_completion.choices[0].message.content
async def _embedding_func(self, texts: list[str]) -> np.ndarray:
"""
Call the Azure OpenAI embeddings endpoint with the given texts.
"""
emb_client = AzureOpenAI(
api_key=AZURE_OPENAI_API_KEY,
api_version=AZURE_EMBEDDING_API_VERSION,
azure_endpoint=AZURE_OPENAI_ENDPOINT,
)
embedding = emb_client.embeddings.create(model=AZURE_EMBEDDING_DEPLOYMENT, input=texts)
embeddings = [item.embedding for item in embedding.data]
return np.array(embeddings)
# if __name__ == "__main__":
# # Initialize the LLMGraph model
# model = LLMGraph()
# asyncio.run(model.initialize_rag()) # Ensure RAG is initialized
# print("LLMGraph model initialized.")
|