Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -1,43 +1,44 @@
|
|
1 |
-
|
2 |
import cv2
|
|
|
3 |
from PIL import Image, ImageDraw
|
|
|
4 |
import torch
|
5 |
-
import streamlit as st
|
6 |
|
7 |
-
# Load
|
8 |
detr_processor = DetrImageProcessor.from_pretrained("facebook/detr-resnet-50")
|
9 |
detr_model = DetrForObjectDetection.from_pretrained("facebook/detr-resnet-50")
|
10 |
trocr_processor = TrOCRProcessor.from_pretrained("microsoft/trocr-base-stage1")
|
11 |
trocr_model = VisionEncoderDecoderModel.from_pretrained("microsoft/trocr-base-stage1")
|
12 |
|
13 |
-
#
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
14 |
def detect_license_plate(frame):
|
15 |
pil_image = Image.fromarray(cv2.cvtColor(frame, cv2.COLOR_BGR2RGB))
|
16 |
inputs = detr_processor(images=pil_image, return_tensors="pt")
|
17 |
outputs = detr_model(**inputs)
|
18 |
|
|
|
19 |
target_sizes = torch.tensor([pil_image.size[::-1]])
|
20 |
results = detr_processor.post_process_object_detection(outputs, target_sizes=target_sizes, threshold=0.9)
|
21 |
-
|
22 |
return results[0]["boxes"], pil_image
|
23 |
|
24 |
-
|
|
|
25 |
def recognize_text_from_plate(cropped_plate):
|
26 |
inputs = trocr_processor(images=cropped_plate, return_tensors="pt")
|
27 |
outputs = trocr_model.generate(**inputs)
|
28 |
return trocr_processor.batch_decode(outputs, skip_special_tokens=True)[0]
|
29 |
|
30 |
|
31 |
-
|
32 |
-
|
33 |
-
# Streamlit configuration
|
34 |
-
st.title("Real-Time Car Number Plate Recognition")
|
35 |
-
st.text("This application uses Hugging Face Transformers to detect and recognize car plates.")
|
36 |
-
|
37 |
-
# Authorized car database
|
38 |
-
authorized_cars = {"KA01AB1234", "MH12XY5678", "DL8CAF9090"}
|
39 |
-
|
40 |
-
# Verification function
|
41 |
def verify_plate(plate_text):
|
42 |
if plate_text in authorized_cars:
|
43 |
return f"✅ Access Granted: {plate_text}"
|
@@ -45,46 +46,45 @@ def verify_plate(plate_text):
|
|
45 |
return f"❌ Access Denied: {plate_text}"
|
46 |
|
47 |
|
48 |
-
#
|
49 |
def live_feed():
|
50 |
-
cap = cv2.VideoCapture(0) # Open
|
51 |
-
stframe = st.empty() #
|
52 |
|
53 |
while cap.isOpened():
|
54 |
ret, frame = cap.read()
|
55 |
if not ret:
|
56 |
break
|
57 |
|
58 |
-
# Detect
|
59 |
boxes, pil_image = detect_license_plate(frame)
|
60 |
draw = ImageDraw.Draw(pil_image)
|
61 |
|
62 |
recognized_plates = []
|
63 |
for box in boxes:
|
64 |
-
# Crop
|
65 |
cropped_plate = pil_image.crop((box[0], box[1], box[2], box[3]))
|
66 |
-
|
67 |
-
# Recognize text
|
68 |
plate_text = recognize_text_from_plate(cropped_plate)
|
69 |
recognized_plates.append(plate_text)
|
70 |
|
71 |
-
# Draw
|
72 |
-
draw.rectangle(box.tolist(), outline="red", width=
|
73 |
draw.text((box[0], box[1]), plate_text, fill="red")
|
74 |
|
75 |
-
# Convert
|
76 |
processed_frame = cv2.cvtColor(np.array(pil_image), cv2.COLOR_RGB2BGR)
|
77 |
|
78 |
-
# Stream
|
79 |
-
stframe.image(processed_frame, channels="BGR")
|
80 |
|
81 |
-
#
|
82 |
for plate_text in recognized_plates:
|
83 |
st.write(verify_plate(plate_text))
|
84 |
|
85 |
cap.release()
|
86 |
cv2.destroyAllWindows()
|
87 |
|
88 |
-
if st.button("Start Camera"):
|
89 |
-
live_feed()
|
90 |
|
|
|
|
|
|
|
|
1 |
+
import streamlit as st
|
2 |
import cv2
|
3 |
+
import numpy as np
|
4 |
from PIL import Image, ImageDraw
|
5 |
+
from transformers import DetrImageProcessor, DetrForObjectDetection, TrOCRProcessor, VisionEncoderDecoderModel
|
6 |
import torch
|
|
|
7 |
|
8 |
+
# Load Models
|
9 |
detr_processor = DetrImageProcessor.from_pretrained("facebook/detr-resnet-50")
|
10 |
detr_model = DetrForObjectDetection.from_pretrained("facebook/detr-resnet-50")
|
11 |
trocr_processor = TrOCRProcessor.from_pretrained("microsoft/trocr-base-stage1")
|
12 |
trocr_model = VisionEncoderDecoderModel.from_pretrained("microsoft/trocr-base-stage1")
|
13 |
|
14 |
+
# Streamlit App Configuration
|
15 |
+
st.title("Real-Time Car Number Plate Recognition")
|
16 |
+
st.write("This app uses Hugging Face Transformers, OpenCV, and Streamlit for detecting and recognizing car number plates in real-time.")
|
17 |
+
|
18 |
+
# Authorized Car Database
|
19 |
+
authorized_cars = {"KA01AB1234", "MH12XY5678", "DL8CAF9090"} # Dummy data for verification
|
20 |
+
|
21 |
+
|
22 |
+
# Detect License Plates
|
23 |
def detect_license_plate(frame):
|
24 |
pil_image = Image.fromarray(cv2.cvtColor(frame, cv2.COLOR_BGR2RGB))
|
25 |
inputs = detr_processor(images=pil_image, return_tensors="pt")
|
26 |
outputs = detr_model(**inputs)
|
27 |
|
28 |
+
# Post-process outputs to get bounding boxes
|
29 |
target_sizes = torch.tensor([pil_image.size[::-1]])
|
30 |
results = detr_processor.post_process_object_detection(outputs, target_sizes=target_sizes, threshold=0.9)
|
|
|
31 |
return results[0]["boxes"], pil_image
|
32 |
|
33 |
+
|
34 |
+
# Recognize Text from Plates
|
35 |
def recognize_text_from_plate(cropped_plate):
|
36 |
inputs = trocr_processor(images=cropped_plate, return_tensors="pt")
|
37 |
outputs = trocr_model.generate(**inputs)
|
38 |
return trocr_processor.batch_decode(outputs, skip_special_tokens=True)[0]
|
39 |
|
40 |
|
41 |
+
# Verify Plate Text
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
42 |
def verify_plate(plate_text):
|
43 |
if plate_text in authorized_cars:
|
44 |
return f"✅ Access Granted: {plate_text}"
|
|
|
46 |
return f"❌ Access Denied: {plate_text}"
|
47 |
|
48 |
|
49 |
+
# Real-Time Video Processing with OpenCV
|
50 |
def live_feed():
|
51 |
+
cap = cv2.VideoCapture(0) # Open webcam
|
52 |
+
stframe = st.empty() # Placeholder for video stream
|
53 |
|
54 |
while cap.isOpened():
|
55 |
ret, frame = cap.read()
|
56 |
if not ret:
|
57 |
break
|
58 |
|
59 |
+
# Detect plates
|
60 |
boxes, pil_image = detect_license_plate(frame)
|
61 |
draw = ImageDraw.Draw(pil_image)
|
62 |
|
63 |
recognized_plates = []
|
64 |
for box in boxes:
|
65 |
+
# Crop and recognize plate
|
66 |
cropped_plate = pil_image.crop((box[0], box[1], box[2], box[3]))
|
|
|
|
|
67 |
plate_text = recognize_text_from_plate(cropped_plate)
|
68 |
recognized_plates.append(plate_text)
|
69 |
|
70 |
+
# Draw box and label
|
71 |
+
draw.rectangle(box.tolist(), outline="red", width=3)
|
72 |
draw.text((box[0], box[1]), plate_text, fill="red")
|
73 |
|
74 |
+
# Convert back to OpenCV format
|
75 |
processed_frame = cv2.cvtColor(np.array(pil_image), cv2.COLOR_RGB2BGR)
|
76 |
|
77 |
+
# Stream video to Streamlit
|
78 |
+
stframe.image(processed_frame, channels="BGR", use_column_width=True)
|
79 |
|
80 |
+
# Display results
|
81 |
for plate_text in recognized_plates:
|
82 |
st.write(verify_plate(plate_text))
|
83 |
|
84 |
cap.release()
|
85 |
cv2.destroyAllWindows()
|
86 |
|
|
|
|
|
87 |
|
88 |
+
# Streamlit UI
|
89 |
+
if st.button("Start Camera"):
|
90 |
+
live_feed()
|