vikramronavrsc commited on
Commit
921649c
·
verified ·
1 Parent(s): 4d5b894

update app.py

Browse files
Files changed (1) hide show
  1. app.py +48 -0
app.py CHANGED
@@ -0,0 +1,48 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import gradio as gr
2
+ from transformers import AutoTokenizer, AutoModelForSequenceClassification
3
+ import torch
4
+
5
+ # Load model and tokenizer from local directory
6
+ MODEL_PATH = "./saved_model1"
7
+ tokenizer = AutoTokenizer.from_pretrained(MODEL_PATH)
8
+ model = AutoModelForSequenceClassification.from_pretrained(MODEL_PATH)
9
+
10
+ def predict(text):
11
+ # Preprocess input
12
+ inputs = tokenizer(
13
+ text,
14
+ padding=True,
15
+ truncation=True,
16
+ max_length=512,
17
+ return_tensors="pt"
18
+ )
19
+
20
+ # Inference
21
+ with torch.no_grad():
22
+ outputs = model(**inputs)
23
+
24
+ # Postprocess output (modify based on your task)
25
+ probabilities = torch.nn.functional.softmax(outputs.logits, dim=-1)
26
+ predicted_class = torch.argmax(probabilities).item()
27
+
28
+ return {
29
+ "text": text,
30
+ "predicted_class": predicted_class,
31
+ "probabilities": probabilities.tolist()[0]
32
+ }
33
+
34
+ # Create Gradio interface
35
+ demo = gr.Interface(
36
+ fn=predict,
37
+ inputs=gr.Textbox(label="Input Text", lines=3),
38
+ outputs=[
39
+ gr.Textbox(label="Processed Text"),
40
+ gr.Number(label="Predicted Class"),
41
+ gr.Label(label="Class Probabilities")
42
+ ],
43
+ title="BERT Model Deployment",
44
+ examples=[["Sample text 1"], ["Another example text"]]
45
+ )
46
+
47
+ if __name__ == "__main__":
48
+ demo.launch()